當前位置: 首頁>>代碼示例>>Python>>正文


Python objectives.binary_crossentropy方法代碼示例

本文整理匯總了Python中lasagne.objectives.binary_crossentropy方法的典型用法代碼示例。如果您正苦於以下問題:Python objectives.binary_crossentropy方法的具體用法?Python objectives.binary_crossentropy怎麽用?Python objectives.binary_crossentropy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在lasagne.objectives的用法示例。


在下文中一共展示了objectives.binary_crossentropy方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: calc_loss_multi

# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import binary_crossentropy [as 別名]
def calc_loss_multi(prediction, targets):
    
    #we need to clip predictions when calculating the log-loss
    prediction = T.clip(prediction, 0.0000001, 0.9999999)

    #binary crossentropy is the best choice for a multi-class sigmoid output
    loss = T.mean(objectives.binary_crossentropy(prediction, targets))
    
    return loss

#theano variable for the class targets 
開發者ID:kahst,項目名稱:AcousticEventDetection,代碼行數:13,代碼來源:AED_train.py

示例2: build_loss

# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import binary_crossentropy [as 別名]
def build_loss(pred_var, target_var, resp_dur, t_ind):
    if t_ind==0 or t_ind==1 or t_ind==4:
        loss = T.mean(T.mod(T.abs_(pred_var[:, -resp_dur:, :] - target_var[:, -resp_dur:, :]), np.pi))
    elif t_ind==2 or t_ind==6 or t_ind==8:
        loss = T.mean(binary_crossentropy(pred_var[:,-resp_dur:,-1], target_var[:,-resp_dur:,-1]))
    return loss 
開發者ID:eminorhan,項目名稱:recurrent-memory,代碼行數:8,代碼來源:vardelay_utils.py

示例3: compile_update_softmax

# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import binary_crossentropy [as 別名]
def compile_update_softmax(nnet, inputs, targets):
    """
    create a softmax loss for network given in argument
    """

    floatX = Cfg.floatX
    C = Cfg.C

    final_layer = nnet.all_layers[-1]
    trainable_params = lasagne.layers.get_all_params(final_layer, trainable=True)

    # Regularization
    if Cfg.weight_decay:
        l2_penalty = (floatX(0.5) / C) * get_l2_penalty(nnet)
    else:
        l2_penalty = T.cast(0, dtype='floatX')

    # Backpropagation
    prediction = lasagne.layers.get_output(final_layer, inputs=inputs, deterministic=False)

    if Cfg.ad_experiment:
        train_loss = T.mean(l_objectives.binary_crossentropy(prediction.flatten(), targets), dtype='floatX')
        train_acc = T.mean(l_objectives.binary_accuracy(prediction.flatten(), targets), dtype='floatX')
    else:
        train_loss = T.mean(l_objectives.categorical_crossentropy(prediction, targets), dtype='floatX')
        train_acc = T.mean(T.eq(T.argmax(prediction, axis=1), targets), dtype='floatX')

    train_obj = T.cast(train_loss + l2_penalty, dtype='floatX')
    updates = get_updates(nnet, train_obj, trainable_params, solver=nnet.solver)
    nnet.backprop = theano.function([inputs, targets], [train_obj, train_acc], updates=updates)

    # Forwardpropagation
    test_prediction = lasagne.layers.get_output(final_layer, inputs=inputs, deterministic=True)

    if Cfg.ad_experiment:
        test_loss = T.mean(l_objectives.binary_crossentropy(test_prediction.flatten(), targets), dtype='floatX')
        test_acc = T.mean(l_objectives.binary_accuracy(test_prediction.flatten(), targets), dtype='floatX')
    else:
        test_loss = T.mean(l_objectives.categorical_crossentropy(test_prediction, targets), dtype='floatX')
        test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), targets), dtype='floatX')

    test_obj = T.cast(test_loss + l2_penalty, dtype='floatX')
    nnet.forward = theano.function([inputs, targets], [test_obj, test_acc, test_prediction, l2_penalty, test_loss]) 
開發者ID:lukasruff,項目名稱:Deep-SVDD,代碼行數:45,代碼來源:updates.py

示例4: create_autoencoder

# 需要導入模塊: from lasagne import objectives [as 別名]
# 或者: from lasagne.objectives import binary_crossentropy [as 別名]
def create_autoencoder(nnet):
    """
    create autoencoder Theano update for network given in argument
    """

    floatX = Cfg.floatX
    C = Cfg.ae_C
    ndim = nnet.data._X_train.ndim

    if ndim == 2:
        inputs = T.matrix('inputs')
    elif ndim == 4:
        inputs = T.tensor4('inputs')

    final_layer = nnet.all_layers[-1]

    # Backpropagation
    trainable_params = lasagne.layers.get_all_params(final_layer, trainable=True)
    prediction = lasagne.layers.get_output(final_layer, inputs=inputs, deterministic=False)

    # use l2 or binary crossentropy loss (features are scaled to [0,1])
    if Cfg.ae_loss == "l2":
        loss = lasagne.objectives.squared_error(prediction, inputs)
    if Cfg.ae_loss == "ce":
        loss = lasagne.objectives.binary_crossentropy(prediction, inputs)

    scores = T.sum(loss, axis=range(1, ndim), dtype='floatX')
    loss = T.mean(scores)

    # Regularization
    if Cfg.ae_weight_decay:
        l2_penalty = (floatX(0.5) / C) * regularize_network_params(final_layer, l2)
    else:
        l2_penalty = T.cast(0, dtype='floatX')

    train_obj = loss + l2_penalty
    updates = get_updates(nnet, train_obj, trainable_params, solver=nnet.ae_solver)
    nnet.ae_backprop = theano.function([inputs], [loss, l2_penalty, scores], updates=updates)

    # Forwardpropagation
    test_prediction = lasagne.layers.get_output(final_layer, inputs=inputs, deterministic=True)

    # use l2 or binary crossentropy loss (features are scaled to [0,1])
    if Cfg.ae_loss == "l2":
        test_loss = lasagne.objectives.squared_error(test_prediction, inputs)
    if Cfg.ae_loss == "ce":
        test_loss = lasagne.objectives.binary_crossentropy(test_prediction, inputs)

    test_scores = T.sum(test_loss, axis=range(1, ndim), dtype='floatX')
    test_loss = T.mean(test_scores)

    nnet.ae_forward = theano.function([inputs],
                                      [test_loss, l2_penalty, test_scores, test_prediction]) 
開發者ID:lukasruff,項目名稱:Deep-SVDD,代碼行數:55,代碼來源:updates.py


注:本文中的lasagne.objectives.binary_crossentropy方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。