當前位置: 首頁>>代碼示例>>Python>>正文


Python nonlinearities.softmax方法代碼示例

本文整理匯總了Python中lasagne.nonlinearities.softmax方法的典型用法代碼示例。如果您正苦於以下問題:Python nonlinearities.softmax方法的具體用法?Python nonlinearities.softmax怎麽用?Python nonlinearities.softmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在lasagne.nonlinearities的用法示例。


在下文中一共展示了nonlinearities.softmax方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: network_classifier

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import softmax [as 別名]
def network_classifier(self, input_var):

        network = {}
        network['classifier/input'] = InputLayer(shape=(None, 3, 64, 64), input_var=input_var, name='classifier/input')
        network['classifier/conv1'] = Conv2DLayer(network['classifier/input'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv1')
        network['classifier/pool1'] = MaxPool2DLayer(network['classifier/conv1'], pool_size=2, stride=2, pad=0, name='classifier/pool1')
        network['classifier/conv2'] = Conv2DLayer(network['classifier/pool1'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv2')
        network['classifier/pool2'] = MaxPool2DLayer(network['classifier/conv2'], pool_size=2, stride=2, pad=0, name='classifier/pool2')
        network['classifier/conv3'] = Conv2DLayer(network['classifier/pool2'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv3')
        network['classifier/pool3'] = MaxPool2DLayer(network['classifier/conv3'], pool_size=2, stride=2, pad=0, name='classifier/pool3')
        network['classifier/conv4'] = Conv2DLayer(network['classifier/pool3'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv4')
        network['classifier/pool4'] = MaxPool2DLayer(network['classifier/conv4'], pool_size=2, stride=2, pad=0, name='classifier/pool4')
        network['classifier/dense1'] = DenseLayer(network['classifier/pool4'], num_units=64, nonlinearity=rectify, name='classifier/dense1')
        network['classifier/output'] = DenseLayer(network['classifier/dense1'], num_units=10, nonlinearity=softmax, name='classifier/output')

        return network 
開發者ID:davidtellez,項目名稱:adda_mnist64,代碼行數:18,代碼來源:adda_network.py

示例2: initialization

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import softmax [as 別名]
def initialization(name):

    initializations = {'sigmoid':init.HeNormal(gain=1.0),
            'softmax':init.HeNormal(gain=1.0),
            'elu':init.HeNormal(gain=1.0),
            'relu':init.HeNormal(gain=math.sqrt(2)),
            'lrelu':init.HeNormal(gain=math.sqrt(2/(1+0.01**2))),
            'vlrelu':init.HeNormal(gain=math.sqrt(2/(1+0.33**2))),
            'rectify':init.HeNormal(gain=math.sqrt(2)),
            'identity':init.HeNormal(gain=math.sqrt(2))
            }

    return initializations[name]


#################### BASELINE MODEL ##################### 
開發者ID:kahst,項目名稱:BirdCLEF-Baseline,代碼行數:18,代碼來源:lasagne_net.py

示例3: build_network_from_ae

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import softmax [as 別名]
def build_network_from_ae(classn):
    input_var = T.tensor4('inputs');
    aug_var = T.matrix('aug_var');
    target_var = T.matrix('targets');

    ae = pickle.load(open('model/conv_ae.pkl', 'rb'));

    input_layer_index = map(lambda pair : pair[0], ae.layers).index('input');
    first_layer = ae.get_all_layers()[input_layer_index + 1];
    input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var);
    first_layer.input_layer = input_layer;

    encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer');
    encode_layer = ae.get_all_layers()[encode_layer_index];
    aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var);

    cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1);
    hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify);

    network_mll = layers.DenseLayer(incoming = hidden_layer, num_units = 12, nonlinearity = sigmoid);
    network_sll = layers.DenseLayer(incoming = hidden_layer, num_units = 7, nonlinearity = softmax);
    network = lasagne.layers.ConcatLayer([network_mll, network_sll], axis = 1);

    return network, encode_layer, input_var, aug_var, target_var; 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:26,代碼來源:conv_sup_cc_mllsll.py

示例4: create_network

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import softmax [as 別名]
def create_network():
    l = 1000
    pool_size = 5
    test_size1 = 13
    test_size2 = 7
    test_size3 = 5
    kernel1 = 128
    kernel2 = 128
    kernel3 = 128
    layer1 = InputLayer(shape=(None, 1, 4, l+1024))
    layer2_1 = SliceLayer(layer1, indices=slice(0, l), axis = -1)
    layer2_2 = SliceLayer(layer1, indices=slice(l, None), axis = -1)
    layer2_3 = SliceLayer(layer2_2, indices = slice(0,4), axis = -2)
    layer2_f = FlattenLayer(layer2_3)
    layer3 = Conv2DLayer(layer2_1,num_filters = kernel1, filter_size = (4,test_size1))
    layer4 = Conv2DLayer(layer3,num_filters = kernel1, filter_size = (1,test_size1))
    layer5 = Conv2DLayer(layer4,num_filters = kernel1, filter_size = (1,test_size1))
    layer6 = MaxPool2DLayer(layer5, pool_size = (1,pool_size))
    layer7 = Conv2DLayer(layer6,num_filters = kernel2, filter_size = (1,test_size2))
    layer8 = Conv2DLayer(layer7,num_filters = kernel2, filter_size = (1,test_size2))
    layer9 = Conv2DLayer(layer8,num_filters = kernel2, filter_size = (1,test_size2))
    layer10 = MaxPool2DLayer(layer9, pool_size = (1,pool_size))
    layer11 = Conv2DLayer(layer10,num_filters = kernel3, filter_size = (1,test_size3))
    layer12 = Conv2DLayer(layer11,num_filters = kernel3, filter_size = (1,test_size3))
    layer13 = Conv2DLayer(layer12,num_filters = kernel3, filter_size = (1,test_size3))
    layer14 = MaxPool2DLayer(layer13, pool_size = (1,pool_size))
    layer14_d = DenseLayer(layer14, num_units= 256)
    layer3_2 = DenseLayer(layer2_f, num_units = 128)
    layer15 = ConcatLayer([layer14_d,layer3_2])
    layer16 = DropoutLayer(layer15,p=0.5)
    layer17 = DenseLayer(layer16, num_units=256)
    network = DenseLayer(layer17, num_units= 2, nonlinearity=softmax)
    return network


#random search to initialize the weights 
開發者ID:kimmo1019,項目名稱:Deopen,代碼行數:38,代碼來源:Deopen_classification.py

示例5: network_discriminator

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import softmax [as 別名]
def network_discriminator(self, features):

        network = {}
        network['discriminator/conv2'] = Conv2DLayer(features, num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='discriminator/conv2')
        network['discriminator/pool2'] = MaxPool2DLayer(network['discriminator/conv2'], pool_size=2, stride=2, pad=0, name='discriminator/pool2')
        network['discriminator/conv3'] = Conv2DLayer(network['discriminator/pool2'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='discriminator/conv3')
        network['discriminator/pool3'] = MaxPool2DLayer(network['discriminator/conv3'], pool_size=2, stride=2, pad=0, name='discriminator/pool3')
        network['discriminator/conv4'] = Conv2DLayer(network['discriminator/pool3'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='discriminator/conv4')
        network['discriminator/pool4'] = MaxPool2DLayer(network['discriminator/conv4'], pool_size=2, stride=2, pad=0, name='discriminator/pool4')
        network['discriminator/dense1'] = DenseLayer(network['discriminator/pool4'], num_units=64, nonlinearity=rectify, name='discriminator/dense1')
        network['discriminator/output'] = DenseLayer(network['discriminator/dense1'], num_units=2, nonlinearity=softmax, name='discriminator/output')

        return network 
開發者ID:davidtellez,項目名稱:adda_mnist64,代碼行數:15,代碼來源:adda_network.py

示例6: __init__

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import softmax [as 別名]
def __init__(
            self,
            env_spec,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=NL.tanh,
            output_b_init=None,
            weight_signal=1.0,
            weight_nonsignal=1.0, 
            weight_smc=1.0):
        """
        :param env_spec: A spec for the mdp.
        :param hidden_sizes: list of sizes for the fully connected hidden layers
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :return:
        """
        Serializable.quick_init(self, locals())
        assert isinstance(env_spec.action_space, Discrete)
        output_b_init = compute_output_b_init(env_spec.action_space.names,
            output_b_init, weight_signal, weight_nonsignal, weight_smc)

        prob_network = MLP(
            input_shape=(env_spec.observation_space.flat_dim,),
            output_dim=env_spec.action_space.n,
            hidden_sizes=hidden_sizes,
            hidden_nonlinearity=hidden_nonlinearity,
            output_nonlinearity=NL.softmax,
            output_b_init=output_b_init
        )
        super(InitCategoricalMLPPolicy, self).__init__(env_spec, hidden_sizes,
            hidden_nonlinearity, prob_network)


# Modified from RLLab GRUNetwork 
開發者ID:vicariousinc,項目名稱:pixelworld,代碼行數:35,代碼來源:init_policy.py

示例7: calc_loss

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import softmax [as 別名]
def calc_loss(prediction, targets):

    #categorical crossentropy is the best choice for a multi-class softmax output
    loss = T.mean(objectives.categorical_crossentropy(prediction, targets))
    
    return loss 
開發者ID:kahst,項目名稱:AcousticEventDetection,代碼行數:8,代碼來源:AED_train.py

示例8: ResNet_FullPreActivation

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import softmax [as 別名]
def ResNet_FullPreActivation(input_shape=(None, 3, PIXELS, PIXELS), input_var=None, n_classes=10, n=18):
    """
    Adapted from https://github.com/Lasagne/Recipes/tree/master/papers/deep_residual_learning.
    Tweaked to be consistent with 'Identity Mappings in Deep Residual Networks', Kaiming He et al. 2016 (https://arxiv.org/abs/1603.05027)

    Formula to figure out depth: 6n + 2
    """

    # Building the network
    l_in = InputLayer(shape=input_shape, input_var=input_var)

    # first layer, output is 16 x 32 x 32
    l = batch_norm(ConvLayer(l_in, num_filters=16, filter_size=(3, 3), stride=(1, 1), nonlinearity=rectify, pad='same', W=he_norm))

    # first stack of residual blocks, output is 16 x 32 x 32
    l = residual_block(l, first=True)
    for _ in range(1, n):
        l = residual_block(l)

    # second stack of residual blocks, output is 32 x 16 x 16
    l = residual_block(l, increase_dim=True)
    for _ in range(1, n):
        l = residual_block(l)

    # third stack of residual blocks, output is 64 x 8 x 8
    l = residual_block(l, increase_dim=True)
    for _ in range(1, n):
        l = residual_block(l)

    bn_post_conv = BatchNormLayer(l)
    bn_post_relu = NonlinearityLayer(bn_post_conv, rectify)

    # average pooling
    avg_pool = GlobalPoolLayer(bn_post_relu)

    # fully connected layer
    network = DenseLayer(avg_pool, num_units=n_classes, W=HeNormal(), nonlinearity=softmax)

    return network 
開發者ID:CPJKU,項目名稱:dcase_task2,代碼行數:41,代碼來源:res_net_blocks.py

示例9: nonlinearity

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import softmax [as 別名]
def nonlinearity(name):

    nonlinearities = {'rectify': nl.rectify,
                     'relu': nl.rectify,
                     'lrelu': nl.LeakyRectify(0.01),
                     'vlrelu': nl.LeakyRectify(0.33),
                     'elu': nl.elu,
                     'softmax': nl.softmax,
                     'sigmoid': nl.sigmoid,
                     'identity':nl.identity}

    return nonlinearities[name] 
開發者ID:kahst,項目名稱:BirdCLEF-Baseline,代碼行數:14,代碼來源:lasagne_net.py

示例10: calc_loss

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import softmax [as 別名]
def calc_loss(prediction, targets):

    # Categorical crossentropy is the best choice for a multi-class softmax output
    loss = T.mean(objectives.categorical_crossentropy(prediction, targets))
    
    return loss 
開發者ID:kahst,項目名稱:BirdCLEF-Baseline,代碼行數:8,代碼來源:lasagne_net.py

示例11: __init__

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import softmax [as 別名]
def __init__(self, x, y, args):
        self.params_theta = []
        self.params_lambda = []
        self.params_weight = []
        if args.dataset == 'mnist':
            input_size = (None, 1, 28, 28)
        elif args.dataset == 'cifar10':
            input_size = (None, 3, 32, 32)
        else:
            raise AssertionError
        layers = [ll.InputLayer(input_size)]
        self.penalty = theano.shared(np.array(0.))

        #conv1
        layers.append(Conv2DLayerWithReg(args, layers[-1], 20, 5))
        self.add_params_to_self(args, layers[-1])
        layers.append(ll.MaxPool2DLayer(layers[-1], pool_size=2, stride=2))
        #conv1
        layers.append(Conv2DLayerWithReg(args, layers[-1], 50, 5))
        self.add_params_to_self(args, layers[-1])
        layers.append(ll.MaxPool2DLayer(layers[-1], pool_size=2, stride=2))
        #fc1
        layers.append(DenseLayerWithReg(args, layers[-1], num_units=500))
        self.add_params_to_self(args, layers[-1])
        #softmax
        layers.append(DenseLayerWithReg(args, layers[-1], num_units=10, nonlinearity=nonlinearities.softmax))
        self.add_params_to_self(args, layers[-1])

        self.layers = layers
        self.y = ll.get_output(layers[-1], x, deterministic=False)
        self.prediction = T.argmax(self.y, axis=1)
        # self.penalty = penalty if penalty != 0. else T.constant(0.)
        print(self.params_lambda)
        # time.sleep(20)
        # cost function
        self.loss = T.mean(categorical_crossentropy(self.y, y))
        self.lossWithPenalty = T.add(self.loss, self.penalty)
        print "loss and losswithpenalty", type(self.loss), type(self.lossWithPenalty) 
開發者ID:bigaidream-projects,項目名稱:drmad,代碼行數:40,代碼來源:models.py

示例12: build_model

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import softmax [as 別名]
def build_model(self, input_dim):
        l_in = InputLayer(shape=(self.batch_size, input_dim))

        l_hidden1 = DenseLayer(l_in, num_units=self.n_hidden, nonlinearity=rectify)
        l_hidden1_dropout = DropoutLayer(l_hidden1, p=self.dropout)

        l_hidden2 = DenseLayer(l_hidden1_dropout, num_units=self.n_hidden / 2, nonlinearity=rectify)
        l_hidden2_dropout = DropoutLayer(l_hidden2, p=self.dropout)

        l_hidden3 = DenseLayer(l_hidden2_dropout, num_units=self.n_hidden, nonlinearity=rectify)
        l_hidden3_dropout = DropoutLayer(l_hidden3, p=self.dropout)

        l_out = DenseLayer(l_hidden3_dropout, num_units=self.n_classes_, nonlinearity=softmax)

        return l_out 
開發者ID:ahara,項目名稱:kaggle_otto,代碼行數:17,代碼來源:nn_adagrad_pca.py

示例13: build_model

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import softmax [as 別名]
def build_model(self, input_dim):
        l_in = InputLayer(shape=(self.batch_size, input_dim))

        l_hidden1 = DenseLayer(l_in, num_units=self.n_hidden, nonlinearity=rectify)
        l_hidden1_dropout = DropoutLayer(l_hidden1, p=self.dropout)

        l_hidden2 = DenseLayer(l_hidden1_dropout, num_units=self.n_hidden / 2, nonlinearity=rectify)
        l_hidden2_dropout = DropoutLayer(l_hidden2, p=self.dropout)

        l_hidden3 = DenseLayer(l_hidden2_dropout, num_units=self.n_hidden / 4, nonlinearity=rectify)
        l_hidden3_dropout = DropoutLayer(l_hidden3, p=self.dropout)

        l_out = DenseLayer(l_hidden3_dropout, num_units=self.n_classes_, nonlinearity=softmax)

        return l_out 
開發者ID:ahara,項目名稱:kaggle_otto,代碼行數:17,代碼來源:nn_adagrad_log.py

示例14: build_model

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import softmax [as 別名]
def build_model(self, input_dim):
        l_in = InputLayer(shape=(self.batch_size, input_dim))

        l_hidden1 = DenseLayer(l_in, num_units=self.n_hidden, nonlinearity=rectify)
        l_hidden1_dropout = DropoutLayer(l_hidden1, p=self.dropout)

        l_hidden2 = DenseLayer(l_hidden1_dropout, num_units=self.n_hidden, nonlinearity=rectify)
        l_hidden2_dropout = DropoutLayer(l_hidden2, p=self.dropout)

        l_hidden3 = DenseLayer(l_hidden2_dropout, num_units=self.n_hidden, nonlinearity=rectify)
        l_hidden3_dropout = DropoutLayer(l_hidden3, p=self.dropout)

        l_out = DenseLayer(l_hidden3_dropout, num_units=self.n_classes_, nonlinearity=softmax)

        return l_out 
開發者ID:ahara,項目名稱:kaggle_otto,代碼行數:17,代碼來源:nn_adagrad_pca.py

示例15: build_model

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import softmax [as 別名]
def build_model(self, input_dim):
        l_in = InputLayer(shape=(self.batch_size, input_dim))

        l_hidden1 = DenseLayer(l_in, num_units=self.n_hidden / 2, nonlinearity=rectify)
        l_hidden1_dropout = DropoutLayer(l_hidden1, p=self.dropout)

        l_hidden2 = DenseLayer(l_hidden1_dropout, num_units=self.n_hidden, nonlinearity=rectify)
        l_hidden2_dropout = DropoutLayer(l_hidden2, p=self.dropout)

        l_hidden3 = DenseLayer(l_hidden2_dropout, num_units=self.n_hidden / 2, nonlinearity=rectify)
        l_hidden3_dropout = DropoutLayer(l_hidden3, p=self.dropout)

        l_out = DenseLayer(l_hidden3_dropout, num_units=self.n_classes_, nonlinearity=softmax)

        return l_out 
開發者ID:ahara,項目名稱:kaggle_otto,代碼行數:17,代碼來源:nn_rmsprop_features.py


注:本文中的lasagne.nonlinearities.softmax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。