當前位置: 首頁>>代碼示例>>Python>>正文


Python nonlinearities.rectify方法代碼示例

本文整理匯總了Python中lasagne.nonlinearities.rectify方法的典型用法代碼示例。如果您正苦於以下問題:Python nonlinearities.rectify方法的具體用法?Python nonlinearities.rectify怎麽用?Python nonlinearities.rectify使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在lasagne.nonlinearities的用法示例。


在下文中一共展示了nonlinearities.rectify方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_discriminator_toy

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import rectify [as 別名]
def build_discriminator_toy(image=None, nd=512, GP_norm=None):
    Input = InputLayer(shape=(None, 2), input_var=image)
    print ("Dis input:", Input.output_shape)
    dis0 = DenseLayer(Input, nd, W=Normal(0.02), nonlinearity=relu)
    print ("Dis fc0:", dis0.output_shape)
    if GP_norm is True:
        dis1 = DenseLayer(dis0, nd, W=Normal(0.02), nonlinearity=relu)
    else:
        dis1 = batch_norm(DenseLayer(dis0, nd, W=Normal(0.02), nonlinearity=relu))
    print ("Dis fc1:", dis1.output_shape)
    if GP_norm is True:
        dis2 = batch_norm(DenseLayer(dis1, nd, W=Normal(0.02), nonlinearity=relu))
    else:
        dis2 = DenseLayer(dis1, nd, W=Normal(0.02), nonlinearity=relu)
    print ("Dis fc2:", dis2.output_shape)
    disout = DenseLayer(dis2, 1, W=Normal(0.02), nonlinearity=sigmoid)
    print ("Dis output:", disout.output_shape)
    return disout 
開發者ID:WANG-Chaoyue,項目名稱:EvolutionaryGAN,代碼行數:20,代碼來源:models_uncond.py

示例2: build_generator_32

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import rectify [as 別名]
def build_generator_32(noise=None, ngf=128):
    # noise input 
    InputNoise = InputLayer(shape=(None, 100), input_var=noise)
    #FC Layer 
    gnet0 = DenseLayer(InputNoise, ngf*4*4*4, W=Normal(0.02), nonlinearity=relu)
    print ("Gen fc1:", gnet0.output_shape)
    #Reshape Layer
    gnet1 = ReshapeLayer(gnet0,([0],ngf*4,4,4))
    print ("Gen rs1:", gnet1.output_shape)
    # DeConv Layer
    gnet2 = Deconv2DLayer(gnet1, ngf*2, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv1:", gnet2.output_shape)
    # DeConv Layer
    gnet3 = Deconv2DLayer(gnet2, ngf, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv2:", gnet3.output_shape)
    # DeConv Layer
    gnet4 = Deconv2DLayer(gnet3, 3, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=tanh)
    print ("Gen output:", gnet4.output_shape)
    return gnet4 
開發者ID:WANG-Chaoyue,項目名稱:EvolutionaryGAN,代碼行數:21,代碼來源:models_uncond.py

示例3: build_generator_64

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import rectify [as 別名]
def build_generator_64(noise=None, ngf=128):
    # noise input 
    InputNoise = InputLayer(shape=(None, 100), input_var=noise)
    #FC Layer 
    gnet0 = DenseLayer(InputNoise, ngf*8*4*4, W=Normal(0.02), nonlinearity=relu)
    print ("Gen fc1:", gnet0.output_shape)
    #Reshape Layer
    gnet1 = ReshapeLayer(gnet0,([0],ngf*8,4,4))
    print ("Gen rs1:", gnet1.output_shape)
    # DeConv Layer
    gnet2 = Deconv2DLayer(gnet1, ngf*8, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv2:", gnet2.output_shape)
    # DeConv Layer
    gnet3 = Deconv2DLayer(gnet2, ngf*4, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv3:", gnet3.output_shape)
    # DeConv Layer
    gnet4 = Deconv2DLayer(gnet3, ngf*4, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv4:", gnet4.output_shape)
    # DeConv Layer
    gnet5 = Deconv2DLayer(gnet4, ngf*2, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv5:", gnet5.output_shape)
    # DeConv Layer
    gnet6 = Deconv2DLayer(gnet5, 3, (3,3), (1,1), crop='same', W=Normal(0.02),nonlinearity=tanh)
    print ("Gen output:", gnet6.output_shape)
    return gnet6 
開發者ID:WANG-Chaoyue,項目名稱:EvolutionaryGAN,代碼行數:27,代碼來源:models_uncond.py

示例4: network_classifier

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import rectify [as 別名]
def network_classifier(self, input_var):

        network = {}
        network['classifier/input'] = InputLayer(shape=(None, 3, 64, 64), input_var=input_var, name='classifier/input')
        network['classifier/conv1'] = Conv2DLayer(network['classifier/input'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv1')
        network['classifier/pool1'] = MaxPool2DLayer(network['classifier/conv1'], pool_size=2, stride=2, pad=0, name='classifier/pool1')
        network['classifier/conv2'] = Conv2DLayer(network['classifier/pool1'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv2')
        network['classifier/pool2'] = MaxPool2DLayer(network['classifier/conv2'], pool_size=2, stride=2, pad=0, name='classifier/pool2')
        network['classifier/conv3'] = Conv2DLayer(network['classifier/pool2'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv3')
        network['classifier/pool3'] = MaxPool2DLayer(network['classifier/conv3'], pool_size=2, stride=2, pad=0, name='classifier/pool3')
        network['classifier/conv4'] = Conv2DLayer(network['classifier/pool3'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv4')
        network['classifier/pool4'] = MaxPool2DLayer(network['classifier/conv4'], pool_size=2, stride=2, pad=0, name='classifier/pool4')
        network['classifier/dense1'] = DenseLayer(network['classifier/pool4'], num_units=64, nonlinearity=rectify, name='classifier/dense1')
        network['classifier/output'] = DenseLayer(network['classifier/dense1'], num_units=10, nonlinearity=softmax, name='classifier/output')

        return network 
開發者ID:davidtellez,項目名稱:adda_mnist64,代碼行數:18,代碼來源:adda_network.py

示例5: __init__

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import rectify [as 別名]
def __init__(self, incoming, num_filters, filter_size, stride=(1, 1),
                 pad=0, untie_biases=False, groups=1,
                 W=init.Uniform(), b=init.Constant(0.),
                 nonlinearity=nl.rectify, flip_filters=True,
                 convolution=T.nnet.conv2d, filter_dilation=(1, 1), **kwargs):
        assert num_filters % groups == 0
        self.groups = groups
        super(GroupConv2DLayer, self).__init__(incoming, num_filters, filter_size,
                                               stride=stride, pad=pad,
                                               untie_biases=untie_biases,
                                               W=W, b=b,
                                               nonlinearity=nonlinearity,
                                               flip_filters=flip_filters,
                                               convolution=convolution,
                                               filter_dilation=filter_dilation,
                                               **kwargs) 
開發者ID:alexlee-gk,項目名稱:visual_dynamics,代碼行數:18,代碼來源:layers_theano.py

示例6: __init__

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import rectify [as 別名]
def __init__(self, incoming_vertex, incoming_edge, num_filters, filter_size, W=init.GlorotUniform(),
                 b=init.Constant(0.), nonlinearity=nonlinearities.rectify, **kwargs):
        self.vertex_shape = incoming_vertex.output_shape
        self.edge_shape = incoming_edge.output_shape

        self.input_shape = incoming_vertex.output_shape
        incomings = [incoming_vertex, incoming_edge]
        self.vertex_incoming_index = 0
        self.edge_incoming_index = 1
        super(GraphConvLayer, self).__init__(incomings, **kwargs)
        if nonlinearity is None:
            self.nonlinearity = nonlinearities.identity
        else:
            self.nonlinearity = nonlinearity

        self.num_filters = num_filters
        self.filter_size = filter_size

        self.W = self.add_param(W, self.get_W_shape(), name="W")
        if b is None:
            self.b = None
        else:
            self.b = self.add_param(b, (num_filters,), name="b", regularizable=False) 
開發者ID:XuezheMax,項目名稱:LasagneNLP,代碼行數:25,代碼來源:graph.py

示例7: __init__

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import rectify [as 別名]
def __init__(self, incoming, W_h=init.GlorotUniform(), b_h=init.Constant(0.), W_t=init.GlorotUniform(),
                 b_t=init.Constant(0.), nonlinearity=nonlinearities.rectify, **kwargs):
        super(HighwayDenseLayer, self).__init__(incoming, **kwargs)
        self.nonlinearity = (nonlinearities.identity if nonlinearity is None
                             else nonlinearity)

        num_inputs = int(np.prod(self.input_shape[1:]))

        self.W_h = self.add_param(W_h, (num_inputs, num_inputs), name="W_h")
        if b_h is None:
            self.b_h = None
        else:
            self.b_h = self.add_param(b_h, (num_inputs,), name="b_h", regularizable=False)

        self.W_t = self.add_param(W_t, (num_inputs, num_inputs), name="W_t")
        if b_t is None:
            self.b_t = None
        else:
            self.b_t = self.add_param(b_t, (num_inputs,), name="b_t", regularizable=False) 
開發者ID:XuezheMax,項目名稱:LasagneNLP,代碼行數:21,代碼來源:highway.py

示例8: initialization

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import rectify [as 別名]
def initialization(name):

    initializations = {'sigmoid':init.HeNormal(gain=1.0),
            'softmax':init.HeNormal(gain=1.0),
            'elu':init.HeNormal(gain=1.0),
            'relu':init.HeNormal(gain=math.sqrt(2)),
            'lrelu':init.HeNormal(gain=math.sqrt(2/(1+0.01**2))),
            'vlrelu':init.HeNormal(gain=math.sqrt(2/(1+0.33**2))),
            'rectify':init.HeNormal(gain=math.sqrt(2)),
            'identity':init.HeNormal(gain=math.sqrt(2))
            }

    return initializations[name]


#################### BASELINE MODEL ##################### 
開發者ID:kahst,項目名稱:BirdCLEF-Baseline,代碼行數:18,代碼來源:lasagne_net.py

示例9: __init__

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import rectify [as 別名]
def __init__(self, incoming, num_units, W=init.GlorotUniform(),
                 b=init.Constant(0.), nonlinearity=nonlinearities.rectify,
                 num_leading_axes=1, p=0.5, shared_axes=(), noise_samples=None,
                 **kwargs):
        super(DenseDropoutLayer, self).__init__(
            incoming, num_units, W, b, nonlinearity,
            num_leading_axes, **kwargs)

        self.p = p
        self.shared_axes = shared_axes

        # init randon number generator
        self._srng = RandomStreams(get_rng().randint(1, 2147462579))

        # initialize noise samples
        self.noise = self.init_noise(noise_samples) 
開發者ID:mcgillmrl,項目名稱:kusanagi,代碼行數:18,代碼來源:layers.py

示例10: __init__

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import rectify [as 別名]
def __init__(self, incomings, nfilters, nrings=5, nrays=16,
                 W=LI.GlorotNormal(), b=LI.Constant(0.0),
                 normalize_rings=False, normalize_input=False, take_max=True, 
                 nonlinearity=LN.rectify, **kwargs):
        super(GCNNLayer, self).__init__(incomings, **kwargs)
        
        # patch operator sizes
        self.nfilters = nfilters
        self.nrings = nrings
        self.nrays = nrays
        self.filter_shape = (nfilters, self.input_shapes[0][1], nrings, nrays)
        self.biases_shape = (nfilters, )
        # path operator parameters
        self.normalize_rings = normalize_rings
        self.normalize_input = normalize_input
        self.take_max = take_max
        self.nonlinearity = nonlinearity
        
        # layer parameters:
        # y = Wx + b, where x are the input features and y are the output features
        self.W = self.add_param(W, self.filter_shape, name="W")
        self.b = self.add_param(b, self.biases_shape, name="b", regularizable=False) 
開發者ID:davideboscaini,項目名稱:acnn,代碼行數:24,代碼來源:custom_layers.py

示例11: build_network_from_ae

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import rectify [as 別名]
def build_network_from_ae(classn):
    input_var = T.tensor4('inputs');
    aug_var = T.matrix('aug_var');
    target_var = T.matrix('targets');

    ae = pickle.load(open('model_4ch/conv_ae.pkl', 'rb'));

    input_layer_index = map(lambda pair : pair[0], ae.layers).index('input');
    first_layer = ae.get_all_layers()[input_layer_index + 1];
    input_layer = layers.InputLayer(shape=(None, 4, 32, 32), input_var = input_var);
    first_layer.input_layer = input_layer;

    encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer');
    encode_layer = ae.get_all_layers()[encode_layer_index];
    aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var);

    cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1);
    hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify);

    network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid);

    return network, encode_layer, input_var, aug_var, target_var; 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:24,代碼來源:conv_sup_cc_4ch.py

示例12: build_network_from_ae

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import rectify [as 別名]
def build_network_from_ae(classn):
    input_var = T.tensor4('inputs');
    aug_var = T.matrix('aug_var');
    target_var = T.matrix('targets');

    ae = pickle.load(open('model/conv_ae.pkl', 'rb'));

    input_layer_index = map(lambda pair : pair[0], ae.layers).index('input');
    first_layer = ae.get_all_layers()[input_layer_index + 1];
    input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var);
    first_layer.input_layer = input_layer;

    encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer');
    encode_layer = ae.get_all_layers()[encode_layer_index];
    aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var);

    cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1);
    hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify);

    network_mll = layers.DenseLayer(incoming = hidden_layer, num_units = 12, nonlinearity = sigmoid);
    network_sll = layers.DenseLayer(incoming = hidden_layer, num_units = 7, nonlinearity = sigmoid);
    network = lasagne.layers.ConcatLayer([network_mll, network_sll], axis = 1);

    return network, encode_layer, input_var, aug_var, target_var; 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:26,代碼來源:conv_sup_cc_mllsll.py

示例13: affine_relu_conv

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import rectify [as 別名]
def affine_relu_conv(network, channels, filter_size, dropout, name_prefix):
    network = ScaleLayer(network, name=name_prefix + '_scale')
    network = BiasLayer(network, name=name_prefix + '_shift')
    network = NonlinearityLayer(network, nonlinearity=rectify,
                                name=name_prefix + '_relu')
    network = Conv2DLayer(network, channels, filter_size, pad='same',
                          W=lasagne.init.HeNormal(gain='relu'),
                          b=None, nonlinearity=None,
                          name=name_prefix + '_conv')
    if dropout:
        network = DropoutLayer(network, dropout)
    return network 
開發者ID:Lasagne,項目名稱:Recipes,代碼行數:14,代碼來源:densenet_fast.py

示例14: bn_relu_conv

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import rectify [as 別名]
def bn_relu_conv(network, channels, filter_size, dropout, name_prefix):
    network = BatchNormLayer(network, name=name_prefix + '_bn')
    network = NonlinearityLayer(network, nonlinearity=rectify,
                                name=name_prefix + '_relu')
    network = Conv2DLayer(network, channels, filter_size, pad='same',
                          W=lasagne.init.HeNormal(gain='relu'),
                          b=None, nonlinearity=None,
                          name=name_prefix + '_conv')
    if dropout:
        network = DropoutLayer(network, dropout)
    return network 
開發者ID:Lasagne,項目名稱:Recipes,代碼行數:13,代碼來源:densenet.py

示例15: build_generator_toy

# 需要導入模塊: from lasagne import nonlinearities [as 別名]
# 或者: from lasagne.nonlinearities import rectify [as 別名]
def build_generator_toy(noise=None, nd=512):
    InputNoise = InputLayer(shape=(None, 2), input_var=noise)
    print ("Gen input:", InputNoise.output_shape)
    gnet0 = DenseLayer(InputNoise, nd, W=Normal(0.02), nonlinearity=relu)
    print ("Gen fc0:", gnet0.output_shape)
    gnet1 = DenseLayer(gnet0, nd, W=Normal(0.02), nonlinearity=relu)
    print ("Gen fc1:", gnet1.output_shape)
    gnet2 = DenseLayer(gnet1, nd, W=Normal(0.02), nonlinearity=relu)
    print ("Gen fc2:", gnet2.output_shape)
    gnetout = DenseLayer(gnet2, 2, W=Normal(0.02), nonlinearity=None)
    print ("Gen output:", gnetout.output_shape)
    return gnetout 
開發者ID:WANG-Chaoyue,項目名稱:EvolutionaryGAN,代碼行數:14,代碼來源:models_uncond.py


注:本文中的lasagne.nonlinearities.rectify方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。