本文整理匯總了Python中lasagne.layers.get_output_shape方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.get_output_shape方法的具體用法?Python layers.get_output_shape怎麽用?Python layers.get_output_shape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類lasagne.layers
的用法示例。
在下文中一共展示了layers.get_output_shape方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_output_shape [as 別名]
def __init__(self, values, ref_img, sxy=60, sc=10, norm_type="sym",
name=None):
C = ll.get_output_shape(ref_img)[1]
if C not in [1, 3]:
raise ValueError("Bilateral filtering requires a color or \
greyscale reference image. Got %d channels." % C)
if C == 1:
kern_std = np.array([sxy, sxy, sc], np.float32)
else:
kern_std = np.array([sxy, sxy, sc, sc, sc], np.float32)
super(BilateralFilterLayer, self).__init__(values, ref_img, kern_std,
norm_type, name=name,
_bilateral=True)
示例2: __init__
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_output_shape [as 別名]
def __init__(self, incoming, channel_layer_class, name=None, **channel_layer_kwargs):
super(ChannelwiseLayer, self).__init__(incoming, name=name)
self.channel_layer_class = channel_layer_class
self.channel_incomings = []
self.channel_outcomings = []
for channel in range(lasagne.layers.get_output_shape(incoming)[0]):
channel_incoming = L.SliceLayer(incoming, indices=slice(channel, channel+1), axis=1,
name='%s.%s%d' % (name, 'slice', channel) if name is not None else None)
channel_outcoming = channel_layer_class(channel_incoming,
name='%s.%s%d' % (name, 'op', channel) if name is not None else None,
**channel_layer_kwargs)
self.channel_incomings.append(channel_incoming)
self.channel_outcomings.append(channel_outcoming)
self.outcoming = L.ConcatLayer(self.channel_outcomings, axis=1,
name='%s.%s' % (name, 'concat') if name is not None else None)
示例3: build_convpool_conv1d
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_output_shape [as 別名]
def build_convpool_conv1d(input_vars, nb_classes, imsize=32, n_colors=3, n_timewin=7):
"""
Builds the complete network with 1D-conv layer to integrate time from sequences of EEG images.
:param input_vars: list of EEG images (one image per time window)
:param nb_classes: number of classes
:param imsize: size of the input image (assumes a square input)
:param n_colors: number of color channels in the image
:param n_timewin: number of time windows in the snippet
:return: a pointer to the output of last layer
"""
convnets = []
w_init = None
# Build 7 parallel CNNs with shared weights
for i in range(n_timewin):
if i == 0:
convnet, w_init = build_cnn(input_vars[i], imsize=imsize, n_colors=n_colors)
else:
convnet, _ = build_cnn(input_vars[i], w_init=w_init, imsize=imsize, n_colors=n_colors)
convnets.append(FlattenLayer(convnet))
# at this point convnets shape is [numTimeWin][n_samples, features]
# we want the shape to be [n_samples, features, numTimeWin]
convpool = ConcatLayer(convnets)
convpool = ReshapeLayer(convpool, ([0], n_timewin, get_output_shape(convnets[0])[1]))
convpool = DimshuffleLayer(convpool, (0, 2, 1))
# input to 1D convlayer should be in (batch_size, num_input_channels, input_length)
convpool = Conv1DLayer(convpool, 64, 3)
# A fully-connected layer of 512 units with 50% dropout on its inputs:
convpool = DenseLayer(lasagne.layers.dropout(convpool, p=.5),
num_units=512, nonlinearity=lasagne.nonlinearities.rectify)
# And, finally, the output layer with 50% dropout on its inputs:
convpool = DenseLayer(lasagne.layers.dropout(convpool, p=.5),
num_units=nb_classes, nonlinearity=lasagne.nonlinearities.softmax)
return convpool
示例4: build_convpool_lstm
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_output_shape [as 別名]
def build_convpool_lstm(input_vars, nb_classes, grad_clip=110, imsize=32, n_colors=3, n_timewin=7):
"""
Builds the complete network with LSTM layer to integrate time from sequences of EEG images.
:param input_vars: list of EEG images (one image per time window)
:param nb_classes: number of classes
:param grad_clip: the gradient messages are clipped to the given value during
the backward pass.
:param imsize: size of the input image (assumes a square input)
:param n_colors: number of color channels in the image
:param n_timewin: number of time windows in the snippet
:return: a pointer to the output of last layer
"""
convnets = []
w_init = None
# Build 7 parallel CNNs with shared weights
for i in range(n_timewin):
if i == 0:
convnet, w_init = build_cnn(input_vars[i], imsize=imsize, n_colors=n_colors)
else:
convnet, _ = build_cnn(input_vars[i], w_init=w_init, imsize=imsize, n_colors=n_colors)
convnets.append(FlattenLayer(convnet))
# at this point convnets shape is [numTimeWin][n_samples, features]
# we want the shape to be [n_samples, features, numTimeWin]
convpool = ConcatLayer(convnets)
convpool = ReshapeLayer(convpool, ([0], n_timewin, get_output_shape(convnets[0])[1]))
# Input to LSTM should have the shape as (batch size, SEQ_LENGTH, num_features)
convpool = LSTMLayer(convpool, num_units=128, grad_clipping=grad_clip,
nonlinearity=lasagne.nonlinearities.tanh)
# We only need the final prediction, we isolate that quantity and feed it
# to the next layer.
convpool = SliceLayer(convpool, -1, 1) # Selecting the last prediction
# A fully-connected layer of 256 units with 50% dropout on its inputs:
convpool = DenseLayer(lasagne.layers.dropout(convpool, p=.5),
num_units=256, nonlinearity=lasagne.nonlinearities.rectify)
# And, finally, the output layer with 50% dropout on its inputs:
convpool = DenseLayer(lasagne.layers.dropout(convpool, p=.5),
num_units=nb_classes, nonlinearity=lasagne.nonlinearities.softmax)
return convpool
示例5: classificationBranch
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_output_shape [as 別名]
def classificationBranch(net, kernel_size):
# Post Convolution
branch = l.batch_norm(l.Conv2DLayer(net,
num_filters=int(FILTERS[-1] * RESNET_K),
filter_size=kernel_size,
nonlinearity=nl.rectify))
#log.p(("\t\tPOST CONV SHAPE:", l.get_output_shape(branch), "LAYER:", len(l.get_all_layers(branch)) - 1))
# Dropout Layer
branch = l.DropoutLayer(branch)
# Dense Convolution
branch = l.batch_norm(l.Conv2DLayer(branch,
num_filters=int(FILTERS[-1] * RESNET_K * 2),
filter_size=1,
nonlinearity=nl.rectify))
#log.p(("\t\tDENSE CONV SHAPE:", l.get_output_shape(branch), "LAYER:", len(l.get_all_layers(branch)) - 1))
# Dropout Layer
branch = l.DropoutLayer(branch)
# Class Convolution
branch = l.Conv2DLayer(branch,
num_filters=len(cfg.CLASSES),
filter_size=1,
nonlinearity=None)
return branch
示例6: __init__
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_output_shape [as 別名]
def __init__(self, predictor, alpha=1.0, lambda_=0.0, w=1.0, use_constrained_opt=False, unweighted_features=False, algorithm_or_fname=None):
if isinstance(predictor, str):
with open(predictor) as predictor_file:
predictor = from_yaml(predictor_file)
self.predictor = predictor
self.action_transformer = self.predictor.transformers['u']
self.action_space = from_config(self.predictor.environment_config['action_space'])
self.alpha = alpha
lambda_ = np.asarray(lambda_)
if np.isscalar(lambda_) or lambda_.ndim == 0:
lambda_ = lambda_ * np.ones(self.action_space.shape) # numpy fails with augmented assigment
assert lambda_.shape == self.action_space.shape
self._lambda_ = lambda_
feature_names = iter_util.flatten_tree(self.predictor.feature_name)
feature_shapes = L.get_output_shape([self.predictor.pred_layers[name] for name in feature_names])
self.repeats = []
for feature_shape in feature_shapes:
self.repeats.extend([np.prod(feature_shape[2:])] * feature_shape[1])
w = np.asarray(w)
if np.isscalar(w) or w.ndim == 0 or len(w) == 1:
w = w * np.ones(len(self.repeats)) # numpy fails with augmented assigment
elif w.shape == (len(feature_names),):
w = np.repeat(w, [feature_shape[1] for feature_shape in feature_shapes])
assert w.shape == (len(self.repeats),)
self._w = w
self._theta = np.append(self._w, self._lambda_)
self._w, self._lambda_ = np.split(self._theta, [len(self._w)]) # alias the parameters
self.use_constrained_opt = use_constrained_opt
self.unweighted_features = unweighted_features
self.image_name = 'image'
self.target_image_name = 'target_image'
if algorithm_or_fname is not None:
from visual_dynamics.algorithms import ServoingFittedQIterationAlgorithm
if isinstance(algorithm_or_fname, str):
with open(algorithm_or_fname) as algorithm_file:
algorithm_config = yaml.load(algorithm_file, Loader=Python2to3Loader)
assert issubclass(algorithm_config['class'], ServoingFittedQIterationAlgorithm)
mean_returns = algorithm_config['mean_returns']
thetas = algorithm_config['thetas']
else:
algorithm = algorithm_or_fname
assert isinstance(algorithm, ServoingFittedQIterationAlgorithm)
mean_returns = algorithm.mean_returns
thetas = algorithm.thetas
print("using parameters based on best returns")
best_return, best_theta = max(zip(mean_returns, thetas))
print(best_return)
print(best_theta)
self.theta = best_theta
示例7: _get_pi2_var
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_output_shape [as 別名]
def _get_pi2_var(self):
if not self.predictor.feature_jacobian_name:
raise NotImplementedError
X_var, U_var, X_target_var, U_lin_var, alpha_var = self.input_vars
names = [self.predictor.feature_name, self.predictor.feature_jacobian_name, self.predictor.next_feature_name]
vars_ = L.get_output([self.predictor.pred_layers[name] for name in iter_util.flatten_tree(names)], deterministic=True)
feature_vars, jac_vars, next_feature_vars = iter_util.unflatten_tree(names, vars_)
y_vars = [T.flatten(feature_var, outdim=2) for feature_var in feature_vars]
y_target_vars = [theano.clone(y_var, replace={X_var: X_target_var}) for y_var in y_vars]
y_target_vars = [theano.ifelse.ifelse(T.eq(alpha_var, 1.0),
y_target_var,
alpha_var * y_target_var + (1 - alpha_var) * y_var)
for (y_var, y_target_var) in zip(y_vars, y_target_vars)]
jac_vars = [theano.clone(jac_var, replace={U_var: U_lin_var}) for jac_var in jac_vars]
y_next_pred_vars = [T.flatten(next_feature_var, outdim=2) for next_feature_var in next_feature_vars]
y_next_pred_vars = [theano.clone(y_next_pred_var, replace={U_var: U_lin_var}) for y_next_pred_var in y_next_pred_vars]
z_vars = [y_target_var - y_next_pred_var + T.batched_tensordot(jac_var, U_lin_var, axes=(2, 1))
for (y_target_var, y_next_pred_var, jac_var) in zip(y_target_vars, y_next_pred_vars, jac_vars)]
feature_shapes = L.get_output_shape([self.predictor.pred_layers[name] for name in iter_util.flatten_tree(self.predictor.feature_name)])
w_var, lambda_var = self.param_vars
A_var = None
b_var = None
normalized_w_vars = T.split(w_var / self.repeats, [feature_shape[1] for feature_shape in feature_shapes], len(feature_shapes))
for jac_var, z_var, normalized_w_var, feature_shape in zip(jac_vars, z_vars, normalized_w_vars, feature_shapes):
z_var = T.flatten(z_var)
jac_var = T.reshape(jac_var, (feature_shape[1], -1, self.action_space.shape[0]))
jac_w_var = T.reshape(jac_var * normalized_w_var[:, None, None], (-1, self.action_space.shape[0]))
jac_var = jac_var.reshape((-1, self.action_space.shape[0]))
if A_var is None:
A_var = jac_var.T.dot(jac_w_var)
else:
A_var += jac_var.T.dot(jac_w_var)
if b_var is None:
b_var = z_var.dot(jac_w_var)
else:
b_var += z_var.dot(jac_w_var)
A_var += T.diag(lambda_var)
pi_var = T.dot(T.nlinalg.matrix_inverse(A_var), b_var) # preprocessed units
return pi_var
示例8: _get_A_b_c_split2_vars
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_output_shape [as 別名]
def _get_A_b_c_split2_vars(self):
"""
Like _get_A_b_c_split2_vars() except that the first two dimensions of
A_split_var, b_split_var, c_split_var are the batch size and the
number of channels, instead of the other way around.
"""
if not self.predictor.feature_jacobian_name:
raise NotImplementedError
X_var, U_var, X_target_var, U_lin_var, alpha_var = self.input_vars
names = [self.predictor.feature_name, self.predictor.feature_jacobian_name, self.predictor.next_feature_name]
vars_ = L.get_output([self.predictor.pred_layers[name] for name in iter_util.flatten_tree(names)], deterministic=True)
feature_vars, jac_vars, next_feature_vars = iter_util.unflatten_tree(names, vars_)
y_vars = [T.flatten(feature_var, outdim=2) for feature_var in feature_vars]
y_target_vars = [theano.clone(y_var, replace={X_var: X_target_var}) for y_var in y_vars]
y_target_vars = [theano.ifelse.ifelse(T.eq(alpha_var, 1.0),
y_target_var,
alpha_var * y_target_var + (1 - alpha_var) * y_var)
for (y_var, y_target_var) in zip(y_vars, y_target_vars)]
jac_vars = [theano.clone(jac_var, replace={U_var: U_lin_var}) for jac_var in jac_vars]
y_next_pred_vars = [T.flatten(next_feature_var, outdim=2) for next_feature_var in next_feature_vars]
y_next_pred_vars = [theano.clone(y_next_pred_var, replace={U_var: U_lin_var}) for y_next_pred_var in y_next_pred_vars]
z_vars = [y_target_var - y_next_pred_var + T.batched_tensordot(jac_var, U_lin_var, axes=(2, 1))
for (y_target_var, y_next_pred_var, jac_var) in zip(y_target_vars, y_next_pred_vars, jac_vars)]
feature_shapes = L.get_output_shape([self.predictor.pred_layers[name] for name in iter_util.flatten_tree(self.predictor.feature_name)])
u_dim, = self.action_space.shape
A_split_vars = []
b_split_vars = []
c_split_vars = []
for jac_var, z_var, feature_shape in zip(jac_vars, z_vars, feature_shapes):
z_var = z_var.reshape((-1, np.prod(feature_shape[2:])))
jac_var = jac_var.reshape((-1, np.prod(feature_shape[2:]), u_dim))
A_split_var = T.batched_tensordot(jac_var, jac_var, axes=(1, 1))
b_split_var = T.batched_tensordot(jac_var, z_var, axes=(1, 1))
c_split_var = T.batched_tensordot(z_var, z_var, axes=(1, 1))
A_split_vars.append(A_split_var.reshape((-1, feature_shape[1], u_dim, u_dim)))
b_split_vars.append(b_split_var.reshape((-1, feature_shape[1], u_dim)))
c_split_vars.append(c_split_var.reshape((-1, feature_shape[1])))
A_split_var = T.concatenate(A_split_vars, axis=1)
b_split_var = T.concatenate(b_split_vars, axis=1)
c_split_var = T.concatenate(c_split_vars, axis=1)
return A_split_var, b_split_var, c_split_var
示例9: build_action_cond_encoder_net
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_output_shape [as 別名]
def build_action_cond_encoder_net(input_shapes, **kwargs):
x_shape, u_shape = input_shapes
X_var = T.tensor4('X')
U_var = T.matrix('U')
X_diff_var = T.tensor4('X_diff')
X_next_var = X_var + X_diff_var
l_x0 = L.InputLayer(shape=(None,) + x_shape, input_var=X_var, name='x')
l_u = L.InputLayer(shape=(None,) + u_shape, input_var=U_var, name='u')
l_x1 = L.Conv2DLayer(l_x0, 64, filter_size=6, stride=2, pad=0,
nonlinearity=nl.rectify,
name='x1')
l_x2 = L.Conv2DLayer(l_x1, 64, filter_size=6, stride=2, pad=2,
nonlinearity=nl.rectify,
name='x2')
l_x3 = L.Conv2DLayer(l_x2, 64, filter_size=6, stride=2, pad=2,
nonlinearity=nl.rectify,
name='x3')
l_x3_shape = lasagne.layers.get_output_shape(l_x3)
l_y4 = L.DenseLayer(l_x3, 1024, nonlinearity=nl.rectify, name='y')
l_y4d = L.DenseLayer(l_y4, 2048, W=init.Uniform(1.0), nonlinearity=None)
l_ud = L.DenseLayer(l_u, 2048, W=init.Uniform(0.1), nonlinearity=None)
l_y4d_diff_pred = L.ElemwiseMergeLayer([l_y4d, l_ud], T.mul)
l_y4_diff_pred = L.DenseLayer(l_y4d_diff_pred, 1024, W=init.Uniform(1.0), nonlinearity=None, name='y_diff_pred')
l_y4_next_pred = L.ElemwiseMergeLayer([l_y4, l_y4_diff_pred], T.add, name='y_next_pred')
l_y3_next_pred = L.DenseLayer(l_y4_next_pred, np.prod(l_x3_shape[1:]), nonlinearity=nl.rectify)
l_x3_next_pred = L.ReshapeLayer(l_y3_next_pred, ([0],) + l_x3_shape[1:],
name='x3_next_pred')
l_x2_next_pred = LT.Deconv2DLayer(l_x3_next_pred, 64, filter_size=6, stride=2, pad=2,
nonlinearity=nl.rectify,
name='x2_next_pred')
l_x1_next_pred = LT.Deconv2DLayer(l_x2_next_pred, 64, filter_size=6, stride=2, pad=2,
nonlinearity=nl.rectify,
name='x1_next_pred')
l_x0_next_pred = LT.Deconv2DLayer(l_x1_next_pred, 3, filter_size=6, stride=2, pad=0,
nonlinearity=None,
name='x0_next_pred')
loss_fn = lambda X, X_pred: ((X - X_pred) ** 2).mean(axis=0).sum() / 2.
loss = loss_fn(X_next_var, lasagne.layers.get_output(l_x0_next_pred))
net_name = 'ActionCondEncoderNet'
input_vars = OrderedDict([(var.name, var) for var in [X_var, U_var, X_diff_var]])
pred_layers = OrderedDict([('x0_next_pred', l_x0_next_pred)])
return net_name, input_vars, pred_layers, loss
示例10: build_convpool_mix
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_output_shape [as 別名]
def build_convpool_mix(input_vars, nb_classes, grad_clip=110, imsize=32, n_colors=3, n_timewin=7):
"""
Builds the complete network with LSTM and 1D-conv layers combined
:param input_vars: list of EEG images (one image per time window)
:param nb_classes: number of classes
:param grad_clip: the gradient messages are clipped to the given value during
the backward pass.
:param imsize: size of the input image (assumes a square input)
:param n_colors: number of color channels in the image
:param n_timewin: number of time windows in the snippet
:return: a pointer to the output of last layer
"""
convnets = []
w_init = None
# Build 7 parallel CNNs with shared weights
for i in range(n_timewin):
if i == 0:
convnet, w_init = build_cnn(input_vars[i], imsize=imsize, n_colors=n_colors)
else:
convnet, _ = build_cnn(input_vars[i], w_init=w_init, imsize=imsize, n_colors=n_colors)
convnets.append(FlattenLayer(convnet))
# at this point convnets shape is [numTimeWin][n_samples, features]
# we want the shape to be [n_samples, features, numTimeWin]
convpool = ConcatLayer(convnets)
convpool = ReshapeLayer(convpool, ([0], n_timewin, get_output_shape(convnets[0])[1]))
reformConvpool = DimshuffleLayer(convpool, (0, 2, 1))
# input to 1D convlayer should be in (batch_size, num_input_channels, input_length)
conv_out = Conv1DLayer(reformConvpool, 64, 3)
conv_out = FlattenLayer(conv_out)
# Input to LSTM should have the shape as (batch size, SEQ_LENGTH, num_features)
lstm = LSTMLayer(convpool, num_units=128, grad_clipping=grad_clip,
nonlinearity=lasagne.nonlinearities.tanh)
lstm_out = SliceLayer(lstm, -1, 1)
# Merge 1D-Conv and LSTM outputs
dense_input = ConcatLayer([conv_out, lstm_out])
# A fully-connected layer of 256 units with 50% dropout on its inputs:
convpool = DenseLayer(lasagne.layers.dropout(dense_input, p=.5),
num_units=512, nonlinearity=lasagne.nonlinearities.rectify)
# And, finally, the 10-unit output layer with 50% dropout on its inputs:
convpool = DenseLayer(convpool,
num_units=nb_classes, nonlinearity=lasagne.nonlinearities.softmax)
return convpool
示例11: buildModel
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_output_shape [as 別名]
def buildModel():
print "BUILDING MODEL TYPE..."
#default settings
filters = 64
first_stride = 2
last_filter_multiplier = 16
#input layer
net = l.InputLayer((None, IM_DIM, IM_SIZE[1], IM_SIZE[0]))
#conv layers
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters, filter_size=7, pad='same', stride=first_stride, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * 2, filter_size=5, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * 4, filter_size=3, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * 8, filter_size=3, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * last_filter_multiplier, filter_size=3, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
print "\tFINAL POOL OUT SHAPE:", l.get_output_shape(net)
#dense layers
net = l.batch_norm(l.DenseLayer(net, 512, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.DropoutLayer(net, DROPOUT)
net = l.batch_norm(l.DenseLayer(net, 512, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.DropoutLayer(net, DROPOUT)
#Classification Layer
if MULTI_LABEL:
net = l.DenseLayer(net, NUM_CLASSES, nonlinearity=nonlinearities.sigmoid, W=init.HeNormal(gain=1))
else:
net = l.DenseLayer(net, NUM_CLASSES, nonlinearity=nonlinearities.softmax, W=init.HeNormal(gain=1))
print "...DONE!"
#model stats
print "MODEL HAS", (sum(hasattr(layer, 'W') for layer in l.get_all_layers(net))), "WEIGHTED LAYERS"
print "MODEL HAS", l.count_params(net), "PARAMS"
return net
示例12: build_resnet_model
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_output_shape [as 別名]
def build_resnet_model():
log.i('BUILDING RESNET MODEL...')
# Random Seed
lasagne_random.set_rng(cfg.getRandomState())
# Input layer for images
net = l.InputLayer((None, cfg.IM_DIM, cfg.IM_SIZE[1], cfg.IM_SIZE[0]))
# First Convolution
net = l.Conv2DLayer(net,
num_filters=cfg.FILTERS[0],
filter_size=cfg.KERNEL_SIZES[0],
pad='same',
W=initialization(cfg.NONLINEARITY),
nonlinearity=None)
log.i(("\tFIRST CONV OUT SHAPE:", l.get_output_shape(net), "LAYER:", len(l.get_all_layers(net)) - 1))
# Residual Stacks
for i in range(0, len(cfg.FILTERS)):
net = resblock(net, filters=cfg.FILTERS[i] * cfg.RESNET_K, kernel_size=cfg.KERNEL_SIZES[i], stride=2, num_groups=cfg.NUM_OF_GROUPS[i])
for _ in range(1, cfg.RESNET_N):
net = resblock(net, filters=cfg.FILTERS[i] * cfg.RESNET_K, kernel_size=cfg.KERNEL_SIZES[i], num_groups=cfg.NUM_OF_GROUPS[i], preactivated=False)
log.i(("\tRES STACK", i + 1, "OUT SHAPE:", l.get_output_shape(net), "LAYER:", len(l.get_all_layers(net)) - 1))
# Post Activation
net = batch_norm(net)
net = l.NonlinearityLayer(net, nonlinearity=nonlinearity(cfg.NONLINEARITY))
# Pooling
net = l.GlobalPoolLayer(net)
log.i(("\tFINAL POOLING SHAPE:", l.get_output_shape(net), "LAYER:", len(l.get_all_layers(net)) - 1))
# Classification Layer
net = l.DenseLayer(net, len(cfg.CLASSES), nonlinearity=nonlinearity('identity'), W=initialization('identity'))
net = l.NonlinearityLayer(net, nonlinearity=nonlinearity('softmax'))
log.i(("\tFINAL NET OUT SHAPE:", l.get_output_shape(net), "LAYER:", len(l.get_all_layers(net))))
log.i("...DONE!")
# Model stats
log.i(("MODEL HAS", (sum(hasattr(layer, 'W') for layer in l.get_all_layers(net))), "WEIGHTED LAYERS"))
log.i(("MODEL HAS", l.count_params(net), "PARAMS"))
return net
################## PASPBERRY PI NET #####################
示例13: build_pi_model
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_output_shape [as 別名]
def build_pi_model():
log.i('BUILDING RASBPERRY PI MODEL...')
# Random Seed
lasagne_random.set_rng(cfg.getRandomState())
# Input layer for images
net = l.InputLayer((None, cfg.IM_DIM, cfg.IM_SIZE[1], cfg.IM_SIZE[0]))
# Convolutinal layer groups
for i in range(len(cfg.FILTERS)):
# 3x3 Convolution + Stride
net = batch_norm(l.Conv2DLayer(net,
num_filters=cfg.FILTERS[i],
filter_size=cfg.KERNEL_SIZES[i],
num_groups=cfg.NUM_OF_GROUPS[i],
pad='same',
stride=2,
W=initialization(cfg.NONLINEARITY),
nonlinearity=nonlinearity(cfg.NONLINEARITY)))
log.i(('\tGROUP', i + 1, 'OUT SHAPE:', l.get_output_shape(net)))
# Fully connected layers + dropout layers
net = l.DenseLayer(net, cfg.DENSE_UNITS, nonlinearity=nonlinearity(cfg.NONLINEARITY), W=initialization(cfg.NONLINEARITY))
net = l.DropoutLayer(net, p=cfg.DROPOUT)
net = l.DenseLayer(net, cfg.DENSE_UNITS, nonlinearity=nonlinearity(cfg.NONLINEARITY), W=initialization(cfg.NONLINEARITY))
net = l.DropoutLayer(net, p=cfg.DROPOUT)
# Classification Layer (Softmax)
net = l.DenseLayer(net, len(cfg.CLASSES), nonlinearity=nonlinearity('softmax'), W=initialization('softmax'))
log.i(("\tFINAL NET OUT SHAPE:", l.get_output_shape(net)))
log.i("...DONE!")
# Model stats
log.i(("MODEL HAS", (sum(hasattr(layer, 'W') for layer in l.get_all_layers(net))), "WEIGHTED LAYERS"))
log.i(("MODEL HAS", l.count_params(net), "PARAMS"))
return net
################## BUILDING THE MODEL ###################
示例14: buildModel
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_output_shape [as 別名]
def buildModel(mtype=1):
print "BUILDING MODEL TYPE", mtype, "..."
#default settings (Model 1)
filters = 64
first_stride = 2
last_filter_multiplier = 16
#specific model type settings (see working notes for details)
if mtype == 2:
first_stride = 1
elif mtype == 3:
filters = 32
last_filter_multiplier = 8
#input layer
net = l.InputLayer((None, IM_DIM, IM_SIZE[1], IM_SIZE[0]))
#conv layers
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters, filter_size=7, pad='same', stride=first_stride, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
if mtype == 2:
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters, filter_size=5, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * 2, filter_size=5, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * 4, filter_size=3, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * 8, filter_size=3, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * last_filter_multiplier, filter_size=3, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
print "\tFINAL POOL OUT SHAPE:", l.get_output_shape(net)
#dense layers
net = l.batch_norm(l.DenseLayer(net, 512, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.batch_norm(l.DenseLayer(net, 512, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
#Classification Layer
if MULTI_LABEL:
net = l.DenseLayer(net, NUM_CLASSES, nonlinearity=nonlinearities.sigmoid, W=init.HeNormal(gain=1))
else:
net = l.DenseLayer(net, NUM_CLASSES, nonlinearity=nonlinearities.softmax, W=init.HeNormal(gain=1))
print "...DONE!"
#model stats
print "MODEL HAS", (sum(hasattr(layer, 'W') for layer in l.get_all_layers(net))), "WEIGHTED LAYERS"
print "MODEL HAS", l.count_params(net), "PARAMS"
return net
示例15: buildModel
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_output_shape [as 別名]
def buildModel(mtype=1):
print "BUILDING MODEL TYPE", mtype, "..."
#default settings (Model 1)
filters = 64
first_stride = 2
last_filter_multiplier = 16
#specific model type settings (see working notes for details)
if mtype == 2:
first_stride = 1
elif mtype == 3:
filters = 32
last_filter_multiplier = 8
#input layer
net = l.InputLayer((None, IM_DIM, IM_SIZE[1], IM_SIZE[0]))
#conv layers
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters, filter_size=7, pad='same', stride=first_stride, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
if mtype == 2:
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters, filter_size=5, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * 2, filter_size=5, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * 4, filter_size=3, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * 8, filter_size=3, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * last_filter_multiplier, filter_size=3, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
print "\tFINAL POOL OUT SHAPE:", l.get_output_shape(net)
#dense layers
net = l.batch_norm(l.DenseLayer(net, 512, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.DropoutLayer(net, DROPOUT)
net = l.batch_norm(l.DenseLayer(net, 512, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.DropoutLayer(net, DROPOUT)
#Classification Layer
if MULTI_LABEL:
net = l.DenseLayer(net, NUM_CLASSES, nonlinearity=nonlinearities.sigmoid, W=init.HeNormal(gain=1))
else:
net = l.DenseLayer(net, NUM_CLASSES, nonlinearity=nonlinearities.softmax, W=init.HeNormal(gain=1))
print "...DONE!"
#model stats
print "MODEL HAS", (sum(hasattr(layer, 'W') for layer in l.get_all_layers(net))), "WEIGHTED LAYERS"
print "MODEL HAS", l.count_params(net), "PARAMS"
return net