當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.get_all_param_values方法代碼示例

本文整理匯總了Python中lasagne.layers.get_all_param_values方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.get_all_param_values方法的具體用法?Python layers.get_all_param_values怎麽用?Python layers.get_all_param_values使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在lasagne.layers的用法示例。


在下文中一共展示了layers.get_all_param_values方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: loadModel

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_all_param_values [as 別名]
def loadModel(filename):
    print "IMPORTING MODEL PARAMS...",
    net_filename = MODEL_PATH + filename

    with open(net_filename, 'rb') as f:
        data = pickle.load(f)

    #for training, we only want to load the model params
    net = data['net']
    params = l.get_all_param_values(net)
    if LOAD_OUTPUT_LAYER:
        l.set_all_param_values(NET, params)
    else:
        l.set_all_param_values(l.get_all_layers(NET)[:-1], params[:-2])    

    print "DONE!" 
開發者ID:kahst,項目名稱:AcousticEventDetection,代碼行數:18,代碼來源:AED_train.py

示例2: loadPretrained

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_all_param_values [as 別名]
def loadPretrained(net):

    if cfg.MODEL_NAME:

        # Load saved model
        n, c = io.loadModel(cfg.MODEL_NAME)

        # Set params
        params = l.get_all_param_values(n)
        if cfg.LOAD_OUTPUT_LAYER:
            l.set_all_param_values(net, params)
        else:
            l.set_all_param_values(l.get_all_layers(net)[:-1], params[:-2])

    return net

#################### LOSS FUNCTION ###################### 
開發者ID:kahst,項目名稱:BirdCLEF-Baseline,代碼行數:19,代碼來源:lasagne_net.py

示例3: saveParams

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_all_param_values [as 別名]
def saveParams(net, classes, epoch):

    log.i("EXPORTING MODEL PARAMS...", new_line=False)
    net_filename = cfg.MODEL_PATH + cfg.RUN_NAME + "_model_params_epoch_" + str(epoch) + ".pkl"
    if not os.path.exists(cfg.MODEL_PATH):
        os.makedirs(cfg.MODEL_PATH)
    with open(net_filename, 'w') as f:
        
        #We want to save the model params only and trained classes
        params = l.get_all_param_values(net)
        data = {'params': params, 'classes':classes, 'run_name': cfg.RUN_NAME, 'epoch':epoch, 'im_size':cfg.IM_SIZE, 'im_dim':cfg.IM_DIM}        
        pickle.dump(data, f)

    log.i("DONE!")

    return os.path.split(net_filename)[-1] 
開發者ID:kahst,項目名稱:BirdCLEF-Baseline,代碼行數:18,代碼來源:lasagne_io.py

示例4: save_model

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_all_param_values [as 別名]
def save_model(self, save_path):
        with open(save_path, 'w') as f:
            data = L.get_all_param_values(self.network)
            pkl.dump(data, f)
            for item in self.trackers:
                data = L.get_all_param_values(item)
                pkl.dump(data, f) 
開發者ID:MiuLab,項目名稱:KB-InfoBot,代碼行數:9,代碼來源:agent_lu_rl.py

示例5: save_model

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_all_param_values [as 別名]
def save_model(self, save_path):
        data = L.get_all_param_values(self.network)
        with open(save_path, 'w') as f:
            pkl.dump(data, f) 
開發者ID:MiuLab,項目名稱:KB-InfoBot,代碼行數:6,代碼來源:agent_rl.py

示例6: train_round

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_all_param_values [as 別名]
def train_round(num_epochs, network, valid_num, train_fn, val_fn, classn, X_train, a_train, y_train, X_test, a_test, y_test):
    print("Starting training...");
    print("TrLoss\tVaLoss\tAUC\tCMatrix0\tCMatrix1\tCMatrix2\tEpochs\tTime");
    start_time = time.time();
    for epoch in range(num_epochs+1):
        train_err = 0;
        train_batches = 0;
        for batch in iterate_minibatches(X_train, a_train, y_train, BatchSize, shuffle = True):
            inputs, augs, targets = batch;
            inputs = data_aug(inputs, mu, sigma);
            train_err += train_fn(inputs, augs, targets);
            train_batches += 1;
        train_err = train_err / train_batches;

        if epoch % 1 == 0:
            # And a full pass over the validation data:
            test_err, _, _, _, Or, Tr = val_fn_epoch(classn, val_fn, X_test, a_test, y_test);
            tpos0, tneg0, fpos0, fneg0 = confusion_matrix(Or, Tr, 0.4);
            tpos1, tneg1, fpos1, fneg1 = confusion_matrix(Or, Tr, 0.5);
            tpos2, tneg2, fpos2, fneg2 = confusion_matrix(Or, Tr, 0.6);
            val_auc = auc_roc(Or, Tr);
            # Then we print the results for this epoch:
            print("{:.4f}\t{:.4f}\t{:.4f}\t{}/{}/{}/{}\t{}/{}/{}/{}\t{}/{}/{}/{}\t{}/{}\t{:.3f}".format(
                train_err, test_err, val_auc,
                tpos0, tneg0, fpos0, fneg0,
                tpos1, tneg1, fpos1, fneg1,
                tpos2, tneg2, fpos2, fneg2,
                epoch+1, num_epochs, time.time()-start_time));
            start_time = time.time();

        if epoch % 4 == 0:
            param_values = layers.get_all_param_values(network);
            pickle.dump(param_values, open(model_dump + "_e{}_cv{}.pkl".format(epoch, valid_num), 'w'));

        if epoch == 15:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value()));
        if epoch == 50:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value()));
        if epoch == 100:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value())); 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:42,代碼來源:deep_conv_classification_alt48_luad10_skcm10.py

示例7: train_round

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_all_param_values [as 別名]
def train_round(num_epochs, network, valid_num, train_fn, val_fn, classn, X_train, a_train, y_train, X_test, a_test, y_test):
    print("Starting training...");
    print("TrLoss\tVaLoss\tAUC\tCMatrix0\tCMatrix1\tCMatrix2\tEpochs\tTime");
    start_time = time.time();
    for epoch in range(num_epochs+1):
        train_err = 0;
        train_batches = 0;
        for batch in iterate_minibatches(X_train, a_train, y_train, BatchSize, shuffle = True):
            inputs, augs, targets = batch;
            inputs = data_aug(inputs, mu, sigma);
            train_err += train_fn(inputs, augs, targets);
            train_batches += 1;
        train_err = train_err / train_batches;

        if epoch % 1 == 0:
            # And a full pass over the validation data:
            test_err, _, _, _, Or, Tr = val_fn_epoch(classn, val_fn, X_test, a_test, y_test);
            tpos0, tneg0, fpos0, fneg0 = confusion_matrix(Or, Tr, 0.4);
            tpos1, tneg1, fpos1, fneg1 = confusion_matrix(Or, Tr, 0.5);
            tpos2, tneg2, fpos2, fneg2 = confusion_matrix(Or, Tr, 0.6);
            val_auc = auc_roc(Or, Tr);
            # Then we print the results for this epoch:
            print("{:.4f}\t{:.4f}\t{:.4f}\t{}/{}/{}/{}\t{}/{}/{}/{}\t{}/{}/{}/{}\t{}/{}\t{:.3f}".format(
                train_err, test_err, val_auc,
                tpos0, tneg0, fpos0, fneg0,
                tpos1, tneg1, fpos1, fneg1,
                tpos2, tneg2, fpos2, fneg2,
                epoch+1, num_epochs, time.time()-start_time));
            start_time = time.time();

        if epoch % 10 == 0:
            param_values = layers.get_all_param_values(network);
            pickle.dump(param_values, open(model_dump + "_e{}_cv{}.pkl".format(epoch, valid_num), 'w'));

        if epoch == 10:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value()));
        if epoch == 40:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value()));
        if epoch == 80:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value())); 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:42,代碼來源:deep_conv_classification_alt60.py

示例8: train_round

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_all_param_values [as 別名]
def train_round(num_epochs, network, valid_num, train_fn, val_fn, classn, X_train, a_train, y_train, X_test, a_test, y_test):
    print("Starting training...");
    print("TrLoss\tVaLoss\tAUC\tCMatrix0\tCMatrix1\tCMatrix2\tEpochs\tTime");
    start_time = time.time();
    for epoch in range(num_epochs+1):
        train_err = 0;
        train_batches = 0;
        for batch in iterate_minibatches(X_train, a_train, y_train, BatchSize, shuffle = True):
            inputs, augs, targets = batch;
            inputs = data_aug(inputs, mu, sigma);
            train_err += train_fn(inputs, augs, targets);
            train_batches += 1;
        train_err = train_err / train_batches;

        if epoch % 1 == 0:
            # And a full pass over the validation data:
            test_err, _, _, _, Or, Tr = val_fn_epoch(classn, val_fn, X_test, a_test, y_test);
            tpos0, tneg0, fpos0, fneg0 = confusion_matrix(Or, Tr, 0.4);
            tpos1, tneg1, fpos1, fneg1 = confusion_matrix(Or, Tr, 0.5);
            tpos2, tneg2, fpos2, fneg2 = confusion_matrix(Or, Tr, 0.6);
            val_auc = auc_roc(Or, Tr);
            # Then we print the results for this epoch:
            print("{:.4f}\t{:.4f}\t{:.4f}\t{}/{}/{}/{}\t{}/{}/{}/{}\t{}/{}/{}/{}\t{}/{}\t{:.3f}".format(
                train_err, test_err, val_auc,
                tpos0, tneg0, fpos0, fneg0,
                tpos1, tneg1, fpos1, fneg1,
                tpos2, tneg2, fpos2, fneg2,
                epoch+1, num_epochs, time.time()-start_time));
            start_time = time.time();

        if epoch % 10 == 0:
            param_values = layers.get_all_param_values(network);
            pickle.dump(param_values, open(model_dump + "_e{}_cv{}.pkl".format(epoch, valid_num), 'w'));

        if epoch == 10:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value()));
        if epoch == 20:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value())); 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:40,代碼來源:deep_conv_classification_alt35.py

示例9: train_round

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_all_param_values [as 別名]
def train_round(num_epochs, network, valid_num, train_fn, val_fn, classn, X_train, a_train, y_train, X_test, a_test, y_test):
    print("Starting training...");
    print("TrLoss\tVaLoss\tAUC\tCMatrix0\tCMatrix1\tCMatrix2\tEpochs\tTime");
    start_time = time.time();
    for epoch in range(num_epochs+1):
        train_err = 0;
        train_batches = 0;
        for batch in iterate_minibatches(X_train, a_train, y_train, BatchSize, shuffle = True):
            inputs, augs, targets = batch;
            inputs = data_aug(inputs, mu, sigma);
            train_err += train_fn(inputs, augs, targets);
            train_batches += 1;
        train_err = train_err / train_batches;

        if epoch % 1 == 0:
            # And a full pass over the validation data:
            test_err, _, _, _, Or, Tr = val_fn_epoch(classn, val_fn, X_test, a_test, y_test);
            tpos0, tneg0, fpos0, fneg0 = confusion_matrix(Or, Tr, 0.4);
            tpos1, tneg1, fpos1, fneg1 = confusion_matrix(Or, Tr, 0.5);
            tpos2, tneg2, fpos2, fneg2 = confusion_matrix(Or, Tr, 0.6);
            val_auc = auc_roc(Or, Tr);
            # Then we print the results for this epoch:
            print("{:.4f}\t{:.4f}\t{:.4f}\t{}/{}/{}/{}\t{}/{}/{}/{}\t{}/{}/{}/{}\t{}/{}\t{:.3f}".format(
                train_err, test_err, val_auc,
                tpos0, tneg0, fpos0, fneg0,
                tpos1, tneg1, fpos1, fneg1,
                tpos2, tneg2, fpos2, fneg2,
                epoch+1, num_epochs, time.time()-start_time));
            start_time = time.time();

        if epoch % 10 == 0:
            param_values = layers.get_all_param_values(network);
            pickle.dump(param_values, open(model_dump + "_e{}_cv{}.pkl".format(epoch, valid_num), 'w'));

        if epoch == 40:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value()));
        if epoch == 100:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value()));
        if epoch == 200:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value())); 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:42,代碼來源:deep_conv_classification_alt39.py

示例10: exc_train

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_all_param_values [as 別名]
def exc_train(train_func, X_train, network):
    print("Starting training...");
    print("Epoch\t\tIter\t\tLoss\t\tSpar\t\tTime");
    it_div = 100;
    for epoch in range(NumEpochs):
        start_time = time.time();
        for it in range(it_div):
            # Iterate through mini batches
            total_loss = 0;
            total_sparsity = 0;
            n_batch = 0;
            for batch in iterate_minibatches_ae(X_train[it::it_div], BatchSize, shuffle=True):
                batch = data_aug(batch);
                batch_target = np.reshape(batch, (batch.shape[0], -1));
                loss, mask = train_func(batch, batch_target);
                total_loss += loss;
                total_sparsity += 100.0 * float(np.count_nonzero(mask>1e-4)) / mask.size;
                n_batch += 1;
            total_loss /= n_batch;
            total_sparsity /= n_batch;
            LearningRate.set_value(np.float32(0.99*LearningRate.get_value()));

            print("{:d}\t\t{:d}\t\t{:.4f}\t\t{:.3f}\t\t{:.3f}".format(
                epoch, it, total_loss, total_sparsity, time.time()-start_time));
            start_time = time.time();

        if epoch % 1 == 0:
            param_values = layers.get_all_param_values(network);
            pickle.dump(param_values, open(filename_model_ae.format(epoch), 'w')); 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:31,代碼來源:deep_conv_ae_spsparse_alt32.py

示例11: exc_train

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_all_param_values [as 別名]
def exc_train(train_func, X_train, network):
    print("Starting training...");
    print("Epoch\t\tIter\t\tLoss\t\tSpar\t\tTime");
    it_div = 100;
    for epoch in range(NumEpochs):
        start_time = time.time();
        for it in range(it_div):
            # Iterate through mini batches
            total_loss = 0;
            total_sparsity = 0;
            n_batch = 0;
            for batch in iterate_minibatches_ae(X_train[it::it_div], BatchSize, shuffle=True):
                batch = data_aug(batch);
                batch_target = np.reshape(batch, (batch.shape[0], -1));
                loss, mask = train_func(batch, batch_target);
                total_loss += loss;
                total_sparsity += 100.0 * float(np.count_nonzero(mask>1e-6)) / mask.size;
                n_batch += 1;
            total_loss /= n_batch;
            total_sparsity /= n_batch;
            LearningRate.set_value(np.float32(0.99*LearningRate.get_value()));

            print("{:d}\t\t{:d}\t\t{:.4f}\t\t{:.3f}\t\t{:.3f}".format(
                epoch, it, total_loss, total_sparsity, time.time()-start_time));
            start_time = time.time();

        if epoch % 1 == 0:
            param_values = layers.get_all_param_values(network);
            pickle.dump(param_values, open(filename_model_ae.format(epoch), 'w')); 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:31,代碼來源:deep_conv_ae_spsparse_alt21.py

示例12: train_round

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_all_param_values [as 別名]
def train_round(num_epochs, network, valid_num, train_fn, val_fn, classn, X_train, y_train, X_test, y_test):
    print("Starting training...");
    print("TrLoss\tVaLoss\tAUC\tCMatrix0\tCMatrix1\tCMatrix2\tEpochs\tTime");
    start_time = time.time();
    for epoch in range(num_epochs+1):
        train_err = 0;
        train_batches = 0;
        for batch in iterate_minibatches(X_train, y_train, BatchSize, shuffle = True):
            inputs, targets = batch;
            inputs = data_aug(inputs, mu, sigma);
            train_err += train_fn(inputs, targets);
            train_batches += 1;
        train_err = train_err / train_batches;

        if epoch % 1 == 0:
            # And a full pass over the validation data:
            test_err, _, _, _, Or, Tr = val_fn_epoch(classn, val_fn, X_test, y_test);
            tpos0, tneg0, fpos0, fneg0 = confusion_matrix(Or, Tr, 0.4);
            tpos1, tneg1, fpos1, fneg1 = confusion_matrix(Or, Tr, 0.5);
            tpos2, tneg2, fpos2, fneg2 = confusion_matrix(Or, Tr, 0.6);
            val_auc = auc_roc(Or, Tr);
            # Then we print the results for this epoch:
            print("{:.4f}\t{:.4f}\t{:.4f}\t{}/{}/{}/{}\t{}/{}/{}/{}\t{}/{}/{}/{}\t{}/{}\t{:.3f}".format(
                train_err, test_err, val_auc,
                tpos0, tneg0, fpos0, fneg0,
                tpos1, tneg1, fpos1, fneg1,
                tpos2, tneg2, fpos2, fneg2,
                epoch+1, num_epochs, time.time()-start_time));
            start_time = time.time();

        if epoch % 10 == 0:
            param_values = layers.get_all_param_values(network);
            pickle.dump(param_values, open(model_dump + "_e{}_cv{}.pkl".format(epoch, valid_num), 'w'));

        if epoch == 5:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value()));
        if epoch == 20:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value()));
        if epoch == 50:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value())); 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:42,代碼來源:deep_conv_classification_alt56.py

示例13: exc_train

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_all_param_values [as 別名]
def exc_train(train_func, X_train, network):
    print("Starting training...");
    print("Epoch\t\tIter\t\tLoss\t\tSpar\t\tTime");
    it_div = 100;
    BatchSize = 2;
    for epoch in range(NumEpochs):
        start_time = time.time();
        for it in range(it_div):
            # Iterate through mini batches
            total_loss = 0;
            total_sparsity = 0;
            n_batch = 0;
            for batch in iterate_minibatches_ae(X_train[it::it_div], BatchSize, shuffle=True):
                batch = data_aug(batch);
                batch_target = np.reshape(batch, (batch.shape[0], -1));
                loss, mask = train_func(batch, batch_target);
                total_loss += loss;
                total_sparsity += 100.0 * float(np.count_nonzero(mask>1e-6)) / mask.size;
                if n_batch % 20 == 0:
                    sample_sparsity = 100.0 * float(np.count_nonzero(mask[0, ...]>1e-5)) / mask[0, ...].size;
                    print("============{:.3f}============".format(sample_sparsity));
                n_batch += 1;
            total_loss /= n_batch;
            total_sparsity /= n_batch;
            LearningRate.set_value(np.float32(0.99*LearningRate.get_value()));

            print("{:d}\t\t{:d}\t\t{:.4f}\t\t{:.3f}\t\t{:.3f}".format(
                epoch, it, total_loss, total_sparsity, time.time()-start_time));
            start_time = time.time();

            if (it % 10 == 0) and (it > 0):
                param_values = layers.get_all_param_values(network);
                pickle.dump(param_values, open(filename_model_ae.format(epoch), 'w'));

            if it % 2 == 0:
                BatchSize += 1;
                if BatchSize > BatchSizeMax: BatchSize = BatchSizeMax; 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:39,代碼來源:deep_conv_ae_spsparse_alt43.py

示例14: train_round

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_all_param_values [as 別名]
def train_round(num_epochs, network, valid_num, train_fn, val_fn, classn, X_train, a_train, y_train, X_test, a_test, y_test):
    print("Starting training...");
    print("TrLoss\tVaLoss\tAUC\tCMatrix0\tCMatrix1\tCMatrix2\tEpochs\tTime");
    start_time = time.time();
    for epoch in range(num_epochs+1):
        train_err = 0;
        train_batches = 0;
        for batch in iterate_minibatches(X_train, a_train, y_train, BatchSize, shuffle = True):
            inputs, augs, targets = batch;
            inputs = data_aug(inputs, mu, sigma);
            train_err += train_fn(inputs, augs, targets);
            train_batches += 1;
        train_err = train_err / train_batches;

        if epoch % 1 == 0:
            # And a full pass over the validation data:
            test_err, _, _, _, Or, Tr = val_fn_epoch(classn, val_fn, X_test, a_test, y_test);
            tpos0, tneg0, fpos0, fneg0 = confusion_matrix(Or, Tr, 0.4);
            tpos1, tneg1, fpos1, fneg1 = confusion_matrix(Or, Tr, 0.5);
            tpos2, tneg2, fpos2, fneg2 = confusion_matrix(Or, Tr, 0.6);
            val_auc = auc_roc(Or, Tr);
            # Then we print the results for this epoch:
            print("{:.4f}\t{:.4f}\t{:.4f}\t{}/{}/{}/{}\t{}/{}/{}/{}\t{}/{}/{}/{}\t{}/{}\t{:.3f}".format(
                train_err, test_err, val_auc,
                tpos0, tneg0, fpos0, fneg0,
                tpos1, tneg1, fpos1, fneg1,
                tpos2, tneg2, fpos2, fneg2,
                epoch+1, num_epochs, time.time()-start_time));
            start_time = time.time();

        if epoch % 5 == 0:
            param_values = layers.get_all_param_values(network);
            pickle.dump(param_values, open(model_dump + "_e{}_cv{}.pkl".format(epoch, valid_num), 'w'));

        if epoch == 30:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value()));
        if epoch == 50:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value()));
        if epoch == 100:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value())); 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:42,代碼來源:deep_conv_classification_alt48_adeno_t1.py

示例15: train_round

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import get_all_param_values [as 別名]
def train_round(num_epochs, network, valid_num, train_fn, val_fn, classn, X_train, a_train, y_train, X_test, a_test, y_test):
    print("Starting training...");
    print("TrLoss\tVaLoss\tAUC\tCMatrix0\tCMatrix1\tCMatrix2\tEpochs\tTime");
    start_time = time.time();
    for epoch in range(num_epochs+1):
        train_err = 0;
        train_batches = 0;
        for batch in iterate_minibatches(X_train, a_train, y_train, BatchSize, shuffle = True):
            inputs, augs, targets = batch;
            inputs = data_aug(inputs, mu, sigma);
            train_err += train_fn(inputs, augs, targets);
            train_batches += 1;
        train_err = train_err / train_batches;

        if epoch % 1 == 0:
            # And a full pass over the validation data:
            test_err, _, _, _, Or, Tr = val_fn_epoch(classn, val_fn, X_test, a_test, y_test);
            tpos0, tneg0, fpos0, fneg0 = confusion_matrix(Or, Tr, 0.4);
            tpos1, tneg1, fpos1, fneg1 = confusion_matrix(Or, Tr, 0.5);
            tpos2, tneg2, fpos2, fneg2 = confusion_matrix(Or, Tr, 0.6);
            val_auc = auc_roc(Or, Tr);
            # Then we print the results for this epoch:
            print("{:.4f}\t{:.4f}\t{:.4f}\t{}/{}/{}/{}\t{}/{}/{}/{}\t{}/{}/{}/{}\t{}/{}\t{:.3f}".format(
                train_err, test_err, val_auc,
                tpos0, tneg0, fpos0, fneg0,
                tpos1, tneg1, fpos1, fneg1,
                tpos2, tneg2, fpos2, fneg2,
                epoch+1, num_epochs, time.time()-start_time));
            start_time = time.time();

        if epoch % 10 == 0:
            param_values = layers.get_all_param_values(network);
            pickle.dump(param_values, open(model_dump + "_e{}_cv{}.pkl".format(epoch, valid_num), 'w'));

        if epoch == 15:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value()));
        if epoch == 50:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value()));
        if epoch == 100:
            LearningRate.set_value(np.float32(0.10*LearningRate.get_value())); 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:42,代碼來源:deep_conv_classification_alt50.py


注:本文中的lasagne.layers.get_all_param_values方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。