當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.ReshapeLayer方法代碼示例

本文整理匯總了Python中lasagne.layers.ReshapeLayer方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.ReshapeLayer方法的具體用法?Python layers.ReshapeLayer怎麽用?Python layers.ReshapeLayer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在lasagne.layers的用法示例。


在下文中一共展示了layers.ReshapeLayer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_generator_32

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ReshapeLayer [as 別名]
def build_generator_32(noise=None, ngf=128):
    # noise input 
    InputNoise = InputLayer(shape=(None, 100), input_var=noise)
    #FC Layer 
    gnet0 = DenseLayer(InputNoise, ngf*4*4*4, W=Normal(0.02), nonlinearity=relu)
    print ("Gen fc1:", gnet0.output_shape)
    #Reshape Layer
    gnet1 = ReshapeLayer(gnet0,([0],ngf*4,4,4))
    print ("Gen rs1:", gnet1.output_shape)
    # DeConv Layer
    gnet2 = Deconv2DLayer(gnet1, ngf*2, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv1:", gnet2.output_shape)
    # DeConv Layer
    gnet3 = Deconv2DLayer(gnet2, ngf, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv2:", gnet3.output_shape)
    # DeConv Layer
    gnet4 = Deconv2DLayer(gnet3, 3, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=tanh)
    print ("Gen output:", gnet4.output_shape)
    return gnet4 
開發者ID:WANG-Chaoyue,項目名稱:EvolutionaryGAN,代碼行數:21,代碼來源:models_uncond.py

示例2: build_generator_64

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ReshapeLayer [as 別名]
def build_generator_64(noise=None, ngf=128):
    # noise input 
    InputNoise = InputLayer(shape=(None, 100), input_var=noise)
    #FC Layer 
    gnet0 = DenseLayer(InputNoise, ngf*8*4*4, W=Normal(0.02), nonlinearity=relu)
    print ("Gen fc1:", gnet0.output_shape)
    #Reshape Layer
    gnet1 = ReshapeLayer(gnet0,([0],ngf*8,4,4))
    print ("Gen rs1:", gnet1.output_shape)
    # DeConv Layer
    gnet2 = Deconv2DLayer(gnet1, ngf*8, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv2:", gnet2.output_shape)
    # DeConv Layer
    gnet3 = Deconv2DLayer(gnet2, ngf*4, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv3:", gnet3.output_shape)
    # DeConv Layer
    gnet4 = Deconv2DLayer(gnet3, ngf*4, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv4:", gnet4.output_shape)
    # DeConv Layer
    gnet5 = Deconv2DLayer(gnet4, ngf*2, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv5:", gnet5.output_shape)
    # DeConv Layer
    gnet6 = Deconv2DLayer(gnet5, 3, (3,3), (1,1), crop='same', W=Normal(0.02),nonlinearity=tanh)
    print ("Gen output:", gnet6.output_shape)
    return gnet6 
開發者ID:WANG-Chaoyue,項目名稱:EvolutionaryGAN,代碼行數:27,代碼來源:models_uncond.py

示例3: OrthoInitRecurrent

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ReshapeLayer [as 別名]
def OrthoInitRecurrent(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, init_val=0.9, out_nlin=lasagne.nonlinearities.linear):
    # Input Layer
    l_in         = InputLayer((batch_size, None, n_in), input_var=input_var)
    if mask_var==None:
        l_mask=None
    else:
        l_mask = InputLayer((batch_size, None), input_var=mask_var)

    _, seqlen, _ = l_in.input_var.shape
    
    l_in_hid     = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid,  W=lasagne.init.GlorotNormal(0.95), nonlinearity=lasagne.nonlinearities.linear)
    l_hid_hid    = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid, W=lasagne.init.Orthogonal(gain=init_val), nonlinearity=lasagne.nonlinearities.linear)
    l_rec        = lasagne.layers.CustomRecurrentLayer(l_in, l_in_hid, l_hid_hid, nonlinearity=lasagne.nonlinearities.tanh, mask_input=l_mask, grad_clipping=100)

    # Output Layer
    l_shp        = ReshapeLayer(l_rec, (-1, n_hid))
    l_dense      = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.95), nonlinearity=out_nlin)
    
    # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above.
    l_out        = ReshapeLayer(l_dense, (batch_size, seqlen, n_out))

    return l_out, l_rec 
開發者ID:eminorhan,項目名稱:recurrent-memory,代碼行數:24,代碼來源:models.py

示例4: LeInitRecurrent

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ReshapeLayer [as 別名]
def LeInitRecurrent(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, diag_val=0.9, offdiag_val=0.01, out_nlin=lasagne.nonlinearities.linear):
    # Input Layer
    l_in = InputLayer((batch_size, None, n_in), input_var=input_var)
    if mask_var==None:
        l_mask=None
    else:
        l_mask = InputLayer((batch_size, None), input_var=mask_var)

    _, seqlen, _ = l_in.input_var.shape
    
    l_in_hid = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid, W=lasagne.init.GlorotNormal(0.95), nonlinearity=lasagne.nonlinearities.linear)
    l_hid_hid = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid, W=LeInit(diag_val=diag_val, offdiag_val=offdiag_val), nonlinearity=lasagne.nonlinearities.linear)
    l_rec = lasagne.layers.CustomRecurrentLayer(l_in, l_in_hid, l_hid_hid, nonlinearity=lasagne.nonlinearities.rectify, mask_input=l_mask, grad_clipping=100)

    # Output Layer
    l_shp = ReshapeLayer(l_rec, (-1, n_hid))
    l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.95), nonlinearity=out_nlin)

    # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above.
    l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out))

    return l_out, l_rec 
開發者ID:eminorhan,項目名稱:recurrent-memory,代碼行數:24,代碼來源:models.py

示例5: model

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ReshapeLayer [as 別名]
def model(input_var, batch_size=1):
    l_input = InputLayer((batch_size, None, 8), input_var=input_var)
    batch_size_var, seqlen, _ = l_input.input_var.shape

    # Neural Turing Machine Layer
    memory = Memory((128, 20), name='memory')
    controller = DenseController(l_input, memory_shape=(128, 20),
        num_units=100, num_reads=1, name='controller')
    heads = [
        WriteHead(controller, num_shifts=3, memory_shape=(128, 20), name='write'),
        ReadHead(controller, num_shifts=3, memory_shape=(128, 20), name='read')
    ]
    l_ntm = NTMLayer(l_input, memory=memory, controller=controller, heads=heads)

    # Output Layer
    l_output_reshape = ReshapeLayer(l_ntm, (-1, 100))
    l_output_dense = DenseLayer(l_output_reshape, num_units=8, name='dense')
    l_output = ReshapeLayer(l_output_dense, (batch_size_var if batch_size \
        is None else batch_size, seqlen, 8))

    return l_output 
開發者ID:snipsco,項目名稱:ntm-lasagne,代碼行數:23,代碼來源:test_layers.py

示例6: build_critic

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ReshapeLayer [as 別名]
def build_critic(input_var=None):
    from lasagne.layers import (InputLayer, Conv2DLayer, ReshapeLayer,
                                DenseLayer)
    try:
        from lasagne.layers.dnn import batch_norm_dnn as batch_norm
    except ImportError:
        from lasagne.layers import batch_norm
    from lasagne.nonlinearities import LeakyRectify
    lrelu = LeakyRectify(0.2)
    # input: (None, 1, 28, 28)
    layer = InputLayer(shape=(None, 1, 28, 28), input_var=input_var)
    # two convolutions
    layer = batch_norm(Conv2DLayer(layer, 64, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    layer = batch_norm(Conv2DLayer(layer, 128, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    # fully-connected layer
    layer = batch_norm(DenseLayer(layer, 1024, nonlinearity=lrelu))
    # output layer (linear)
    layer = DenseLayer(layer, 1, nonlinearity=None)
    print ("critic output:", layer.output_shape)
    return layer 
開發者ID:uoguelph-mlrg,項目名稱:Theano-MPI,代碼行數:24,代碼來源:lsgan.py

示例7: build_critic

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ReshapeLayer [as 別名]
def build_critic(input_var=None):
    from lasagne.layers import (InputLayer, Conv2DLayer, ReshapeLayer,
                                DenseLayer)
    try:
        from lasagne.layers.dnn import batch_norm_dnn as batch_norm
    except ImportError:
        from lasagne.layers import batch_norm
    from lasagne.nonlinearities import LeakyRectify
    lrelu = LeakyRectify(0.2)
    # input: (None, 1, 28, 28)
    layer = InputLayer(shape=(None, 1, 28, 28), input_var=input_var)
    # two convolutions
    layer = batch_norm(Conv2DLayer(layer, 64, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    layer = batch_norm(Conv2DLayer(layer, 128, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    # fully-connected layer
    layer = batch_norm(DenseLayer(layer, 1024, nonlinearity=lrelu))
    # output layer (linear and without bias)
    layer = DenseLayer(layer, 1, nonlinearity=None, b=None)
    print ("critic output:", layer.output_shape)
    return layer 
開發者ID:uoguelph-mlrg,項目名稱:Theano-MPI,代碼行數:24,代碼來源:wgan.py

示例8: build_generator_128

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ReshapeLayer [as 別名]
def build_generator_128(noise=None, ngf=128):
    lrelu = LeakyRectify(0.2)
    # noise input 
    InputNoise = InputLayer(shape=(None, 100), input_var=noise)
    #FC Layer 
    gnet0 = DenseLayer(InputNoise, ngf*16*4*4, W=Normal(0.02), nonlinearity=lrelu)
    print ("Gen fc1:", gnet0.output_shape)
    #Reshape Layer
    gnet1 = ReshapeLayer(gnet0,([0],ngf*16,4,4))
    print ("Gen rs1:", gnet1.output_shape)
    # DeConv Layer
    gnet2 = Deconv2DLayer(gnet1, ngf*8, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=lrelu)
    print ("Gen deconv1:", gnet2.output_shape)
    # DeConv Layer
    gnet3 = Deconv2DLayer(gnet2, ngf*8, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=lrelu)
    print ("Gen deconv2:", gnet3.output_shape)
    # DeConv Layer
    gnet4 = Deconv2DLayer(gnet3, ngf*4, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=lrelu)
    print ("Gen deconv3:", gnet4.output_shape)
    # DeConv Layer
    gnet5 = Deconv2DLayer(gnet4, ngf*4, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=lrelu)
    print ("Gen deconv4:", gnet5.output_shape)
    # DeConv Layer
    gnet6 = Deconv2DLayer(gnet5, ngf*2, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=lrelu)
    print ("Gen deconv5:", gnet6.output_shape)
    # DeConv Layer
    gnet7 = Deconv2DLayer(gnet6, 3, (3,3), (1,1), crop='same', W=Normal(0.02),nonlinearity=tanh)
    print ("Gen output:", gnet7.output_shape)
    return gnet7 
開發者ID:WANG-Chaoyue,項目名稱:EvolutionaryGAN,代碼行數:31,代碼來源:models_uncond.py

示例9: build_convpool_conv1d

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ReshapeLayer [as 別名]
def build_convpool_conv1d(input_vars, nb_classes, imsize=32, n_colors=3, n_timewin=7):
    """
    Builds the complete network with 1D-conv layer to integrate time from sequences of EEG images.

    :param input_vars: list of EEG images (one image per time window)
    :param nb_classes: number of classes
    :param imsize: size of the input image (assumes a square input)
    :param n_colors: number of color channels in the image
    :param n_timewin: number of time windows in the snippet
    :return: a pointer to the output of last layer
    """
    convnets = []
    w_init = None
    # Build 7 parallel CNNs with shared weights
    for i in range(n_timewin):
        if i == 0:
            convnet, w_init = build_cnn(input_vars[i], imsize=imsize, n_colors=n_colors)
        else:
            convnet, _ = build_cnn(input_vars[i], w_init=w_init, imsize=imsize, n_colors=n_colors)
        convnets.append(FlattenLayer(convnet))
    # at this point convnets shape is [numTimeWin][n_samples, features]
    # we want the shape to be [n_samples, features, numTimeWin]
    convpool = ConcatLayer(convnets)
    convpool = ReshapeLayer(convpool, ([0], n_timewin, get_output_shape(convnets[0])[1]))
    convpool = DimshuffleLayer(convpool, (0, 2, 1))
    # input to 1D convlayer should be in (batch_size, num_input_channels, input_length)
    convpool = Conv1DLayer(convpool, 64, 3)
    # A fully-connected layer of 512 units with 50% dropout on its inputs:
    convpool = DenseLayer(lasagne.layers.dropout(convpool, p=.5),
            num_units=512, nonlinearity=lasagne.nonlinearities.rectify)
    # And, finally, the output layer with 50% dropout on its inputs:
    convpool = DenseLayer(lasagne.layers.dropout(convpool, p=.5),
            num_units=nb_classes, nonlinearity=lasagne.nonlinearities.softmax)
    return convpool 
開發者ID:pbashivan,項目名稱:EEGLearn,代碼行數:36,代碼來源:eeg_cnn_lib.py

示例10: build_convpool_lstm

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ReshapeLayer [as 別名]
def build_convpool_lstm(input_vars, nb_classes, grad_clip=110, imsize=32, n_colors=3, n_timewin=7):
    """
    Builds the complete network with LSTM layer to integrate time from sequences of EEG images.

    :param input_vars: list of EEG images (one image per time window)
    :param nb_classes: number of classes
    :param grad_clip:  the gradient messages are clipped to the given value during
                        the backward pass.
    :param imsize: size of the input image (assumes a square input)
    :param n_colors: number of color channels in the image
    :param n_timewin: number of time windows in the snippet
    :return: a pointer to the output of last layer
    """
    convnets = []
    w_init = None
    # Build 7 parallel CNNs with shared weights
    for i in range(n_timewin):
        if i == 0:
            convnet, w_init = build_cnn(input_vars[i], imsize=imsize, n_colors=n_colors)
        else:
            convnet, _ = build_cnn(input_vars[i], w_init=w_init, imsize=imsize, n_colors=n_colors)
        convnets.append(FlattenLayer(convnet))
    # at this point convnets shape is [numTimeWin][n_samples, features]
    # we want the shape to be [n_samples, features, numTimeWin]
    convpool = ConcatLayer(convnets)
    convpool = ReshapeLayer(convpool, ([0], n_timewin, get_output_shape(convnets[0])[1]))
    # Input to LSTM should have the shape as (batch size, SEQ_LENGTH, num_features)
    convpool = LSTMLayer(convpool, num_units=128, grad_clipping=grad_clip,
        nonlinearity=lasagne.nonlinearities.tanh)
    # We only need the final prediction, we isolate that quantity and feed it
    # to the next layer.
    convpool = SliceLayer(convpool, -1, 1)      # Selecting the last prediction
    # A fully-connected layer of 256 units with 50% dropout on its inputs:
    convpool = DenseLayer(lasagne.layers.dropout(convpool, p=.5),
            num_units=256, nonlinearity=lasagne.nonlinearities.rectify)
    # And, finally, the output layer with 50% dropout on its inputs:
    convpool = DenseLayer(lasagne.layers.dropout(convpool, p=.5),
            num_units=nb_classes, nonlinearity=lasagne.nonlinearities.softmax)
    return convpool 
開發者ID:pbashivan,項目名稱:EEGLearn,代碼行數:41,代碼來源:eeg_cnn_lib.py

示例11: TanhRecurrent

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ReshapeLayer [as 別名]
def TanhRecurrent(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1,
                    n_hid=200, wscale=1.0,
                    out_nlin=lasagne.nonlinearities.linear):
    # Input Layer
    l_in = InputLayer((batch_size, None, n_in), input_var=input_var)
    if mask_var == None:
        l_mask = None
    else:
        l_mask = InputLayer((batch_size, None), input_var=mask_var)

    _, seqlen, _ = l_in.input_var.shape

    l_in_hid = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid,
                          W=lasagne.init.HeNormal(0.95), nonlinearity=lasagne.nonlinearities.linear)
    l_hid_hid = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid,
                           W=lasagne.init.HeNormal(gain=wscale), nonlinearity=lasagne.nonlinearities.linear)
    l_rec = lasagne.layers.CustomRecurrentLayer(l_in, l_in_hid, l_hid_hid, nonlinearity=lasagne.nonlinearities.tanh,
                                                mask_input=l_mask, grad_clipping=100)

    l_shp_1 =  ReshapeLayer(l_rec, (-1, n_hid))
    l_shp_2 =  ReshapeLayer(l_hid_hid, (-1, n_hid))

    l_shp = lasagne.layers.ElemwiseSumLayer((l_shp_1,l_shp_2),coeffs=(np.float32(0.2),np.float32(0.8)))

    # Output Layer
    l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.HeNormal(0.95), nonlinearity=out_nlin)

    # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above.
    l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out))

    return l_out, l_rec 
開發者ID:eminorhan,項目名稱:recurrent-memory,代碼行數:33,代碼來源:models.py

示例12: LeInitRecurrentWithFastWeights

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ReshapeLayer [as 別名]
def LeInitRecurrentWithFastWeights(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1,
                    n_hid=200, diag_val=0.9, offdiag_val=0.01,
                    out_nlin=lasagne.nonlinearities.linear, gamma=0.9):
    # Input Layer
    l_in = InputLayer((batch_size, None, n_in), input_var=input_var)
    if mask_var==None:
        l_mask=None
    else:
        l_mask = InputLayer((batch_size, None), input_var=mask_var)

    _, seqlen, _ = l_in.input_var.shape
    
    l_in_hid = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid,  
                          W=lasagne.init.GlorotNormal(0.95), 
                          nonlinearity=lasagne.nonlinearities.linear)
    l_hid_hid = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid, 
                           W=LeInit(diag_val=diag_val, offdiag_val=offdiag_val), 
                           nonlinearity=lasagne.nonlinearities.linear)
    l_rec = CustomRecurrentLayerWithFastWeights(l_in, l_in_hid, l_hid_hid, 
                                                nonlinearity=lasagne.nonlinearities.rectify,
                                                mask_input=l_mask, grad_clipping=100, gamma=gamma)

    # Output Layer
    l_shp = ReshapeLayer(l_rec, (-1, n_hid))
    l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.95), nonlinearity=out_nlin)
    
    # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above.
    l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out))

    return l_out, l_rec 
開發者ID:eminorhan,項目名稱:recurrent-memory,代碼行數:32,代碼來源:models.py

示例13: GRURecurrent

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ReshapeLayer [as 別名]
def GRURecurrent(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, diag_val=0.9, offdiag_val=0.01, out_nlin=lasagne.nonlinearities.linear):
    # Input Layer
    l_in         = InputLayer((batch_size, None, n_in), input_var=input_var)
    if mask_var==None:
        l_mask = None
    else:
        l_mask = InputLayer((batch_size, None), input_var=mask_var)
        
    _, seqlen, _ = l_in.input_var.shape
    l_rec        = GRULayer(l_in, n_hid, 
                            resetgate=lasagne.layers.Gate(W_in=lasagne.init.GlorotNormal(0.05), 
                                                          W_hid=lasagne.init.GlorotNormal(0.05), 
                                                          W_cell=None, b=lasagne.init.Constant(0.)), 
                            updategate=lasagne.layers.Gate(W_in=lasagne.init.GlorotNormal(0.05), 
                                                           W_hid=lasagne.init.GlorotNormal(0.05), 
                                                           W_cell=None), 
                            hidden_update=lasagne.layers.Gate(W_in=lasagne.init.GlorotNormal(0.05), 
                                                              W_hid=LeInit(diag_val=diag_val, offdiag_val=offdiag_val), 
                                                              W_cell=None, nonlinearity=lasagne.nonlinearities.rectify), 
                            hid_init = lasagne.init.Constant(0.), backwards=False, learn_init=False, 
                            gradient_steps=-1, grad_clipping=10., unroll_scan=False, precompute_input=True, mask_input=l_mask, only_return_final=False)

    # Output Layer
    l_shp        = ReshapeLayer(l_rec, (-1, n_hid))
    l_dense      = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.05), nonlinearity=out_nlin)
    # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above.
    l_out        = ReshapeLayer(l_dense, (batch_size, seqlen, n_out))

    return l_out, l_rec 
開發者ID:eminorhan,項目名稱:recurrent-memory,代碼行數:31,代碼來源:models.py

示例14: LeInitRecurrent

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ReshapeLayer [as 別名]
def LeInitRecurrent(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, 
                    n_hid=200, diag_val=0.9, offdiag_val=0.01,
                    out_nlin=lasagne.nonlinearities.linear):
    # Input Layer
    l_in = InputLayer((batch_size, None, n_in), input_var=input_var)
    if mask_var==None:
        l_mask=None
    else:
        l_mask = InputLayer((batch_size, None), input_var=mask_var)

    _, seqlen, _ = l_in.input_var.shape
    
    l_in_hid = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid,  
                          W=lasagne.init.GlorotNormal(0.95), 
                          nonlinearity=lasagne.nonlinearities.linear)
    l_hid_hid = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid, 
                           W=LeInit(diag_val=diag_val, offdiag_val=offdiag_val), 
                           nonlinearity=lasagne.nonlinearities.linear)
    l_rec = lasagne.layers.CustomRecurrentLayer(l_in, l_in_hid, l_hid_hid, nonlinearity=lasagne.nonlinearities.rectify, mask_input=l_mask, grad_clipping=100)

    # Output Layer
    l_shp = ReshapeLayer(l_rec, (-1, n_hid))
    l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.95), nonlinearity=out_nlin)
    
    # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above.
    l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out))

    return l_out, l_rec 
開發者ID:eminorhan,項目名稱:recurrent-memory,代碼行數:30,代碼來源:models.py

示例15: LeInitRecurrentWithFastWeights

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ReshapeLayer [as 別名]
def LeInitRecurrentWithFastWeights(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, 
                    n_hid=200, diag_val=0.9, offdiag_val=0.01,
                    out_nlin=lasagne.nonlinearities.linear, gamma=0.9):
    # Input Layer
    l_in = InputLayer((batch_size, None, n_in), input_var=input_var)
    if mask_var==None:
        l_mask=None
    else:
        l_mask = InputLayer((batch_size, None), input_var=mask_var)

    _, seqlen, _ = l_in.input_var.shape
    
    l_in_hid = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid,  
                          W=lasagne.init.GlorotNormal(0.95), 
                          nonlinearity=lasagne.nonlinearities.linear)
    l_hid_hid = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid, 
                           W=LeInit(diag_val=diag_val, offdiag_val=offdiag_val), 
                           nonlinearity=lasagne.nonlinearities.linear)
    l_rec = CustomRecurrentLayerWithFastWeights(l_in, l_in_hid, l_hid_hid, 
                                                nonlinearity=lasagne.nonlinearities.rectify,
                                                mask_input=l_mask, grad_clipping=100, gamma=gamma)

    # Output Layer
    l_shp = ReshapeLayer(l_rec, (-1, n_hid))
    l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.95), nonlinearity=out_nlin)
    
    # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above.
    l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out))

    return l_out, l_rec 
開發者ID:eminorhan,項目名稱:recurrent-memory,代碼行數:32,代碼來源:models.py


注:本文中的lasagne.layers.ReshapeLayer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。