當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.MaxPool2DLayer方法代碼示例

本文整理匯總了Python中lasagne.layers.MaxPool2DLayer方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.MaxPool2DLayer方法的具體用法?Python layers.MaxPool2DLayer怎麽用?Python layers.MaxPool2DLayer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在lasagne.layers的用法示例。


在下文中一共展示了layers.MaxPool2DLayer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: network_classifier

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import MaxPool2DLayer [as 別名]
def network_classifier(self, input_var):

        network = {}
        network['classifier/input'] = InputLayer(shape=(None, 3, 64, 64), input_var=input_var, name='classifier/input')
        network['classifier/conv1'] = Conv2DLayer(network['classifier/input'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv1')
        network['classifier/pool1'] = MaxPool2DLayer(network['classifier/conv1'], pool_size=2, stride=2, pad=0, name='classifier/pool1')
        network['classifier/conv2'] = Conv2DLayer(network['classifier/pool1'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv2')
        network['classifier/pool2'] = MaxPool2DLayer(network['classifier/conv2'], pool_size=2, stride=2, pad=0, name='classifier/pool2')
        network['classifier/conv3'] = Conv2DLayer(network['classifier/pool2'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv3')
        network['classifier/pool3'] = MaxPool2DLayer(network['classifier/conv3'], pool_size=2, stride=2, pad=0, name='classifier/pool3')
        network['classifier/conv4'] = Conv2DLayer(network['classifier/pool3'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv4')
        network['classifier/pool4'] = MaxPool2DLayer(network['classifier/conv4'], pool_size=2, stride=2, pad=0, name='classifier/pool4')
        network['classifier/dense1'] = DenseLayer(network['classifier/pool4'], num_units=64, nonlinearity=rectify, name='classifier/dense1')
        network['classifier/output'] = DenseLayer(network['classifier/dense1'], num_units=10, nonlinearity=softmax, name='classifier/output')

        return network 
開發者ID:davidtellez,項目名稱:adda_mnist64,代碼行數:18,代碼來源:adda_network.py

示例2: build_model

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import MaxPool2DLayer [as 別名]
def build_model(self):
        '''
        Build Acoustic Event Net model
        :return:
        '''

        # A architecture 41 classes
        nonlin = lasagne.nonlinearities.rectify
        net = {}
        net['input'] = InputLayer((None, feat_shape[0], feat_shape[1], feat_shape[2]))  # channel, time. frequency
        # ----------- 1st layer group ---------------
        net['conv1a'] = ConvLayer(net['input'], num_filters=64, filter_size=(3, 3), stride=1, nonlinearity=nonlin)
        net['conv1b'] = ConvLayer(net['conv1a'], num_filters=64, filter_size=(3, 3), stride=1, nonlinearity=nonlin)
        net['pool1'] = MaxPool2DLayer(net['conv1b'], pool_size=(1, 2))  # (time, freq)
        # ----------- 2nd layer group ---------------
        net['conv2a'] = ConvLayer(net['pool1'], num_filters=128, filter_size=(3, 3), stride=1, nonlinearity=nonlin)
        net['conv2b'] = ConvLayer(net['conv2a'], num_filters=128, filter_size=(3, 3), stride=1, nonlinearity=nonlin)
        net['pool2'] = MaxPool2DLayer(net['conv2b'], pool_size=(2, 2))  # (time, freq)
        # ----------- fully connected layer group ---------------
        net['fc5'] = DenseLayer(net['pool2'], num_units=1024, nonlinearity=nonlin)
        net['fc6'] = DenseLayer(net['fc5'], num_units=1024, nonlinearity=nonlin)
        net['prob'] = DenseLayer(net['fc6'], num_units=41, nonlinearity=lasagne.nonlinearities.softmax)

        return net 
開發者ID:znaoya,項目名稱:aenet,代碼行數:26,代碼來源:__init__.py

示例3: create_network

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import MaxPool2DLayer [as 別名]
def create_network():
    l = 1000
    pool_size = 5
    test_size1 = 13
    test_size2 = 7
    test_size3 = 5
    kernel1 = 128
    kernel2 = 128
    kernel3 = 128
    layer1 = InputLayer(shape=(None, 1, 4, l+1024))
    layer2_1 = SliceLayer(layer1, indices=slice(0, l), axis = -1)
    layer2_2 = SliceLayer(layer1, indices=slice(l, None), axis = -1)
    layer2_3 = SliceLayer(layer2_2, indices = slice(0,4), axis = -2)
    layer2_f = FlattenLayer(layer2_3)
    layer3 = Conv2DLayer(layer2_1,num_filters = kernel1, filter_size = (4,test_size1))
    layer4 = Conv2DLayer(layer3,num_filters = kernel1, filter_size = (1,test_size1))
    layer5 = Conv2DLayer(layer4,num_filters = kernel1, filter_size = (1,test_size1))
    layer6 = MaxPool2DLayer(layer5, pool_size = (1,pool_size))
    layer7 = Conv2DLayer(layer6,num_filters = kernel2, filter_size = (1,test_size2))
    layer8 = Conv2DLayer(layer7,num_filters = kernel2, filter_size = (1,test_size2))
    layer9 = Conv2DLayer(layer8,num_filters = kernel2, filter_size = (1,test_size2))
    layer10 = MaxPool2DLayer(layer9, pool_size = (1,pool_size))
    layer11 = Conv2DLayer(layer10,num_filters = kernel3, filter_size = (1,test_size3))
    layer12 = Conv2DLayer(layer11,num_filters = kernel3, filter_size = (1,test_size3))
    layer13 = Conv2DLayer(layer12,num_filters = kernel3, filter_size = (1,test_size3))
    layer14 = MaxPool2DLayer(layer13, pool_size = (1,pool_size))
    layer14_d = DenseLayer(layer14, num_units= 256)
    layer3_2 = DenseLayer(layer2_f, num_units = 128)
    layer15 = ConcatLayer([layer14_d,layer3_2])
    layer16 = DropoutLayer(layer15,p=0.5)
    layer17 = DenseLayer(layer16, num_units=256)
    network = DenseLayer(layer17, num_units= 2, nonlinearity=softmax)
    return network


#random search to initialize the weights 
開發者ID:kimmo1019,項目名稱:Deopen,代碼行數:38,代碼來源:Deopen_classification.py

示例4: create_network

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import MaxPool2DLayer [as 別名]
def create_network():
    l = 1000
    pool_size = 5
    test_size1 = 13
    test_size2 = 7
    test_size3 = 5
    kernel1 = 128
    kernel2 = 128
    kernel3 = 128
    layer1 = InputLayer(shape=(None, 1, 4, l+1024))
    layer2_1 = SliceLayer(layer1, indices=slice(0, l), axis = -1)
    layer2_2 = SliceLayer(layer1, indices=slice(l, None), axis = -1)
    layer2_3 = SliceLayer(layer2_2, indices = slice(0,4), axis = -2)
    layer2_f = FlattenLayer(layer2_3)
    layer3 = Conv2DLayer(layer2_1,num_filters = kernel1, filter_size = (4,test_size1))
    layer4 = Conv2DLayer(layer3,num_filters = kernel1, filter_size = (1,test_size1))
    layer5 = Conv2DLayer(layer4,num_filters = kernel1, filter_size = (1,test_size1))
    layer6 = MaxPool2DLayer(layer5, pool_size = (1,pool_size))
    layer7 = Conv2DLayer(layer6,num_filters = kernel2, filter_size = (1,test_size2))
    layer8 = Conv2DLayer(layer7,num_filters = kernel2, filter_size = (1,test_size2))
    layer9 = Conv2DLayer(layer8,num_filters = kernel2, filter_size = (1,test_size2))
    layer10 = MaxPool2DLayer(layer9, pool_size = (1,pool_size))
    layer11 = Conv2DLayer(layer10,num_filters = kernel3, filter_size = (1,test_size3))
    layer12 = Conv2DLayer(layer11,num_filters = kernel3, filter_size = (1,test_size3))
    layer13 = Conv2DLayer(layer12,num_filters = kernel3, filter_size = (1,test_size3))
    layer14 = MaxPool2DLayer(layer13, pool_size = (1,pool_size))
    layer14_d = DenseLayer(layer14, num_units= 256)
    layer3_2 = DenseLayer(layer2_f, num_units = 128)
    layer15 = ConcatLayer([layer14_d,layer3_2])
    #layer16 = DropoutLayer(layer15,p=0.5)
    layer17 = DenseLayer(layer15, num_units=256)
    network = DenseLayer(layer17, num_units= 1, nonlinearity=None)
    return network


#random search to initialize the weights 
開發者ID:kimmo1019,項目名稱:Deopen,代碼行數:38,代碼來源:Deopen_regression.py

示例5: network_discriminator

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import MaxPool2DLayer [as 別名]
def network_discriminator(self, features):

        network = {}
        network['discriminator/conv2'] = Conv2DLayer(features, num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='discriminator/conv2')
        network['discriminator/pool2'] = MaxPool2DLayer(network['discriminator/conv2'], pool_size=2, stride=2, pad=0, name='discriminator/pool2')
        network['discriminator/conv3'] = Conv2DLayer(network['discriminator/pool2'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='discriminator/conv3')
        network['discriminator/pool3'] = MaxPool2DLayer(network['discriminator/conv3'], pool_size=2, stride=2, pad=0, name='discriminator/pool3')
        network['discriminator/conv4'] = Conv2DLayer(network['discriminator/pool3'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='discriminator/conv4')
        network['discriminator/pool4'] = MaxPool2DLayer(network['discriminator/conv4'], pool_size=2, stride=2, pad=0, name='discriminator/pool4')
        network['discriminator/dense1'] = DenseLayer(network['discriminator/pool4'], num_units=64, nonlinearity=rectify, name='discriminator/dense1')
        network['discriminator/output'] = DenseLayer(network['discriminator/dense1'], num_units=2, nonlinearity=softmax, name='discriminator/output')

        return network 
開發者ID:davidtellez,項目名稱:adda_mnist64,代碼行數:15,代碼來源:adda_network.py

示例6: build_cnn

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import MaxPool2DLayer [as 別名]
def build_cnn(input_var=None, w_init=None, n_layers=(4, 2, 1), n_filters_first=32, imsize=32, n_colors=3):
    """
    Builds a VGG style CNN network followed by a fully-connected layer and a softmax layer.
    Stacks are separated by a maxpool layer. Number of kernels in each layer is twice
    the number in previous stack.
    input_var: Theano variable for input to the network
    outputs: pointer to the output of the last layer of network (softmax)

    :param input_var: theano variable as input to the network
    :param w_init: Initial weight values
    :param n_layers: number of layers in each stack. An array of integers with each
                    value corresponding to the number of layers in each stack.
                    (e.g. [4, 2, 1] == 3 stacks with 4, 2, and 1 layers in each.
    :param n_filters_first: number of filters in the first layer
    :param imsize: Size of the image
    :param n_colors: Number of color channels (depth)
    :return: a pointer to the output of last layer
    """
    weights = []        # Keeps the weights for all layers
    count = 0
    # If no initial weight is given, initialize with GlorotUniform
    if w_init is None:
        w_init = [lasagne.init.GlorotUniform()] * sum(n_layers)
    # Input layer
    network = InputLayer(shape=(None, n_colors, imsize, imsize),
                                        input_var=input_var)
    for i, s in enumerate(n_layers):
        for l in range(s):
            network = Conv2DLayer(network, num_filters=n_filters_first * (2 ** i), filter_size=(3, 3),
                          W=w_init[count], pad='same')
            count += 1
            weights.append(network.W)
        network = MaxPool2DLayer(network, pool_size=(2, 2))
    return network, weights 
開發者ID:pbashivan,項目名稱:EEGLearn,代碼行數:36,代碼來源:eeg_cnn_lib.py

示例7: __init__

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import MaxPool2DLayer [as 別名]
def __init__(self, x, y, args):
        self.params_theta = []
        self.params_lambda = []
        self.params_weight = []
        if args.dataset == 'mnist':
            input_size = (None, 1, 28, 28)
        elif args.dataset == 'cifar10':
            input_size = (None, 3, 32, 32)
        else:
            raise AssertionError
        layers = [ll.InputLayer(input_size)]
        self.penalty = theano.shared(np.array(0.))

        #conv1
        layers.append(Conv2DLayerWithReg(args, layers[-1], 20, 5))
        self.add_params_to_self(args, layers[-1])
        layers.append(ll.MaxPool2DLayer(layers[-1], pool_size=2, stride=2))
        #conv1
        layers.append(Conv2DLayerWithReg(args, layers[-1], 50, 5))
        self.add_params_to_self(args, layers[-1])
        layers.append(ll.MaxPool2DLayer(layers[-1], pool_size=2, stride=2))
        #fc1
        layers.append(DenseLayerWithReg(args, layers[-1], num_units=500))
        self.add_params_to_self(args, layers[-1])
        #softmax
        layers.append(DenseLayerWithReg(args, layers[-1], num_units=10, nonlinearity=nonlinearities.softmax))
        self.add_params_to_self(args, layers[-1])

        self.layers = layers
        self.y = ll.get_output(layers[-1], x, deterministic=False)
        self.prediction = T.argmax(self.y, axis=1)
        # self.penalty = penalty if penalty != 0. else T.constant(0.)
        print(self.params_lambda)
        # time.sleep(20)
        # cost function
        self.loss = T.mean(categorical_crossentropy(self.y, y))
        self.lossWithPenalty = T.add(self.loss, self.penalty)
        print "loss and losswithpenalty", type(self.loss), type(self.lossWithPenalty) 
開發者ID:bigaidream-projects,項目名稱:drmad,代碼行數:40,代碼來源:models.py

示例8: build_network_from_ae

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import MaxPool2DLayer [as 別名]
def build_network_from_ae(classn):
    input_var = T.tensor4('input_var');
    target_var = T.imatrix('targets');

    layer = layers.InputLayer(shape=(None, 3, PS, PS), input_var=input_var);
    layer = (layers.Conv2DLayer(layer, 100,  filter_size=(5,5), stride=1, nonlinearity=leaky_rectify));
    layer = (layers.Conv2DLayer(layer, 100,  filter_size=(5,5), stride=1, nonlinearity=leaky_rectify));
    layer = (layers.Conv2DLayer(layer, 120,  filter_size=(4,4), stride=1, nonlinearity=leaky_rectify));
    layer = layers.MaxPool2DLayer(layer, pool_size=(3,3), stride=2);
    layer = (layers.Conv2DLayer(layer, 240,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = (layers.Conv2DLayer(layer, 320,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = (layers.Conv2DLayer(layer, 320,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = (layers.Conv2DLayer(layer, 320,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = (layers.Conv2DLayer(layer, 320,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = (layers.Conv2DLayer(layer, 320,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = (layers.Conv2DLayer(layer, 320,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = (layers.Conv2DLayer(layer, 320,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = (layers.Conv2DLayer(layer, 480,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = (layers.Conv2DLayer(layer, 480,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = (layers.Conv2DLayer(layer, 480,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = (layers.Conv2DLayer(layer, 480,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));

    layer = layers.Pool2DLayer(layer, pool_size=(20,20), stride=20, mode='average_inc_pad');
    network = layers.DenseLayer(layer, classn, nonlinearity=sigmoid);

    return network, input_var, target_var; 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:28,代碼來源:deep_conv_classification_alt55.py

示例9: build_network_from_ae

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import MaxPool2DLayer [as 別名]
def build_network_from_ae(classn):
    input_var = T.tensor4('input_var');
    target_var = T.imatrix('targets');

    layer = layers.InputLayer(shape=(None, 3, PS, PS), input_var=input_var);
    layer = batch_norm(layers.Conv2DLayer(layer, 100,  filter_size=(5,5), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 100,  filter_size=(5,5), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 120,  filter_size=(4,4), stride=1, nonlinearity=leaky_rectify));
    layer = layers.MaxPool2DLayer(layer, pool_size=(3,3), stride=2);
    layer = batch_norm(layers.Conv2DLayer(layer, 240,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 320,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 320,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 320,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 320,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 320,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 320,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 320,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 480,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 480,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 480,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 480,  filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));

    layer = layers.Pool2DLayer(layer, pool_size=(20,20), stride=20, mode='average_inc_pad');
    network = layers.DenseLayer(layer, classn, nonlinearity=sigmoid);

    return network, input_var, target_var; 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:28,代碼來源:deep_conv_classification_alt51_luad10_luad10in20_brca10x1_heatmap.py

示例10: CNN

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import MaxPool2DLayer [as 別名]
def CNN(n_epochs):
    net1 = NeuralNet(
        layers=[
            ('input', layers.InputLayer),
            ('conv1', layers.Conv2DLayer),  # Convolutional layer.  Params defined below
            ('pool1', layers.MaxPool2DLayer),  # Like downsampling, for execution speed
            ('conv2', layers.Conv2DLayer),
            ('hidden3', layers.DenseLayer),
            ('output', layers.DenseLayer),
        ],

        input_shape=(None, 1, 6, 5),
        conv1_num_filters=8,
        conv1_filter_size=(3, 3),
        conv1_nonlinearity=lasagne.nonlinearities.rectify,

        pool1_pool_size=(2, 2),

        conv2_num_filters=12,
        conv2_filter_size=(1, 1),
        conv2_nonlinearity=lasagne.nonlinearities.rectify,

        hidden3_num_units=1000,
        output_num_units=2,
        output_nonlinearity=lasagne.nonlinearities.softmax,

        update_learning_rate=0.0001,
        update_momentum=0.9,

        max_epochs=n_epochs,
        verbose=0,
    )
    return net1 
開發者ID:sirCamp,項目名稱:kaggle-breast-cancer-prediction,代碼行數:35,代碼來源:convolutional_neural_network.py

示例11: build_fcn_segmenter

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import MaxPool2DLayer [as 別名]
def build_fcn_segmenter(input_var, shape, version=2):
    ret = {}

    if version == 2:
        ret['input'] = la = InputLayer(shape, input_var)
        ret['conv%d'%len(ret)] = la = bn(Conv2DLayer(la, num_filters=8, filter_size=7))
        ret['conv%d'%len(ret)] = la = bn(Conv2DLayer(la, num_filters=16, filter_size=3))
        ret['pool%d'%len(ret)] = la = MaxPool2DLayer(la, pool_size=2)
        ret['conv%d'%len(ret)] = la = bn(Conv2DLayer(la, num_filters=32, filter_size=3))
        ret['pool%d'%len(ret)] = la = MaxPool2DLayer(la, pool_size=2)
        ret['conv%d'%len(ret)] = la = bn(Conv2DLayer(la, num_filters=64, filter_size=3))
        ret['pool%d'%len(ret)] = la = MaxPool2DLayer(la, pool_size=2)
        ret['conv%d'%len(ret)] = la = bn(Conv2DLayer(la, num_filters=64, filter_size=3))
        ret['dec%d'%len(ret)] = la = bn(Conv2DLayer(la, num_filters=64, filter_size=3,
            pad='full'))
        ret['ups%d'%len(ret)] = la = Upscale2DLayer(la, scale_factor=2)
        ret['dec%d'%len(ret)] = la = bn(Conv2DLayer(la, num_filters=64, filter_size=3,
            pad='full'))
        ret['ups%d'%len(ret)] = la = Upscale2DLayer(la, scale_factor=2)
        ret['dec%d'%len(ret)] = la = bn(Conv2DLayer(la, num_filters=32, filter_size=7,
            pad='full'))
        ret['ups%d'%len(ret)] = la = Upscale2DLayer(la, scale_factor=2)
        ret['dec%d'%len(ret)] = la = bn(Conv2DLayer(la, num_filters=16, filter_size=3,
            pad='full'))
        ret['conv%d'%len(ret)] = la = bn(Conv2DLayer(la, num_filters=8, filter_size=7))
        ret['output'] = la = Conv2DLayer(la, num_filters=1, filter_size=7,
                pad='full', nonlinearity=nn.nonlinearities.sigmoid)

    return ret, nn.layers.get_output(ret['output']), \
            nn.layers.get_output(ret['output'], deterministic=True) 
開發者ID:woshialex,項目名稱:diagnose-heart,代碼行數:32,代碼來源:models.py

示例12: build_model

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import MaxPool2DLayer [as 別名]
def build_model():
    net = {}

    net['input'] = InputLayer((None, 3, 224, 224))
    net['conv1'] = ConvLayer(net['input'],
                             num_filters=96,
                             filter_size=7,
                             stride=2,
                             flip_filters=False)
    # caffe has alpha = alpha * pool_size
    net['norm1'] = NormLayer(net['conv1'], alpha=0.0001)
    net['pool1'] = PoolLayer(net['norm1'],
                             pool_size=3,
                             stride=3,
                             ignore_border=False)
    net['conv2'] = ConvLayer(net['pool1'],
                             num_filters=256,
                             filter_size=5,
                             flip_filters=False)
    net['pool2'] = PoolLayer(net['conv2'],
                             pool_size=2,
                             stride=2,
                             ignore_border=False)
    net['conv3'] = ConvLayer(net['pool2'],
                             num_filters=512,
                             filter_size=3,
                             pad=1,
                             flip_filters=False)
    net['conv4'] = ConvLayer(net['conv3'],
                             num_filters=512,
                             filter_size=3,
                             pad=1,
                             flip_filters=False)
    net['conv5'] = ConvLayer(net['conv4'],
                             num_filters=512,
                             filter_size=3,
                             pad=1,
                             flip_filters=False)
    net['pool5'] = PoolLayer(net['conv5'],
                             pool_size=3,
                             stride=3,
                             ignore_border=False)
    net['fc6'] = DenseLayer(net['pool5'], num_units=4096)
    net['drop6'] = DropoutLayer(net['fc6'], p=0.5)
    net['fc7'] = DenseLayer(net['drop6'], num_units=4096)
    net['drop7'] = DropoutLayer(net['fc7'], p=0.5)
    net['fc8'] = DenseLayer(net['drop7'], num_units=1000, nonlinearity=None)
    net['prob'] = NonlinearityLayer(net['fc8'], softmax)

    return net 
開發者ID:Lasagne,項目名稱:Recipes,代碼行數:52,代碼來源:vgg_cnn_s.py

示例13: build_model

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import MaxPool2DLayer [as 別名]
def build_model():
    net = {}
    net['input'] = InputLayer((None, 3, None, None))
    net['conv1/7x7_s2'] = ConvLayer(
        net['input'], 64, 7, stride=2, pad=3, flip_filters=False)
    net['pool1/3x3_s2'] = PoolLayer(
        net['conv1/7x7_s2'], pool_size=3, stride=2, ignore_border=False)
    net['pool1/norm1'] = LRNLayer(net['pool1/3x3_s2'], alpha=0.00002, k=1)
    net['conv2/3x3_reduce'] = ConvLayer(
        net['pool1/norm1'], 64, 1, flip_filters=False)
    net['conv2/3x3'] = ConvLayer(
        net['conv2/3x3_reduce'], 192, 3, pad=1, flip_filters=False)
    net['conv2/norm2'] = LRNLayer(net['conv2/3x3'], alpha=0.00002, k=1)
    net['pool2/3x3_s2'] = PoolLayer(
      net['conv2/norm2'], pool_size=3, stride=2, ignore_border=False)

    net.update(build_inception_module('inception_3a',
                                      net['pool2/3x3_s2'],
                                      [32, 64, 96, 128, 16, 32]))
    net.update(build_inception_module('inception_3b',
                                      net['inception_3a/output'],
                                      [64, 128, 128, 192, 32, 96]))
    net['pool3/3x3_s2'] = PoolLayer(
      net['inception_3b/output'], pool_size=3, stride=2, ignore_border=False)

    net.update(build_inception_module('inception_4a',
                                      net['pool3/3x3_s2'],
                                      [64, 192, 96, 208, 16, 48]))
    net.update(build_inception_module('inception_4b',
                                      net['inception_4a/output'],
                                      [64, 160, 112, 224, 24, 64]))
    net.update(build_inception_module('inception_4c',
                                      net['inception_4b/output'],
                                      [64, 128, 128, 256, 24, 64]))
    net.update(build_inception_module('inception_4d',
                                      net['inception_4c/output'],
                                      [64, 112, 144, 288, 32, 64]))
    net.update(build_inception_module('inception_4e',
                                      net['inception_4d/output'],
                                      [128, 256, 160, 320, 32, 128]))
    net['pool4/3x3_s2'] = PoolLayer(
      net['inception_4e/output'], pool_size=3, stride=2, ignore_border=False)

    net.update(build_inception_module('inception_5a',
                                      net['pool4/3x3_s2'],
                                      [128, 256, 160, 320, 32, 128]))
    net.update(build_inception_module('inception_5b',
                                      net['inception_5a/output'],
                                      [128, 384, 192, 384, 48, 128]))

    net['pool5/7x7_s1'] = GlobalPoolLayer(net['inception_5b/output'])
    net['loss3/classifier'] = DenseLayer(net['pool5/7x7_s1'],
                                         num_units=1000,
                                         nonlinearity=linear)
    net['prob'] = NonlinearityLayer(net['loss3/classifier'],
                                    nonlinearity=softmax)
    return net 
開發者ID:Lasagne,項目名稱:Recipes,代碼行數:59,代碼來源:googlenet.py

示例14: build_small_cifar10nin_net

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import MaxPool2DLayer [as 別名]
def build_small_cifar10nin_net(input_shapes, **kwargs):
    x_shape, u_shape = input_shapes

    X_var = T.tensor4('X')
    U_var = T.matrix('U')
    X_diff_var = T.tensor4('X_diff')
    X_next_var = X_var + X_diff_var

    l_x0 = L.InputLayer(shape=(None,) + x_shape, input_var=X_var, name='x')
    l_u = L.InputLayer(shape=(None,) + u_shape, input_var=U_var, name='u')

    l_x1 = L.Conv2DLayer(l_x0,
                         num_filters=192,
                         filter_size=5,
                         pad=2,
                         flip_filters=False,
                         name='x1')
    l_x2 = L.Conv2DLayer(l_x1, num_filters=160, filter_size=1, flip_filters=False,
                         name='x2')
    l_x3 = L.Conv2DLayer(l_x2, num_filters=96, filter_size=1, flip_filters=False,
                         name='x3')
    l_x4 = L.MaxPool2DLayer(l_x3,
                            pool_size=3,
                            stride=2,
                            ignore_border=False,
                            name='x4')

    l_x4_diff_pred = LT.BilinearLayer([l_x4, l_u], axis=2, name='x4_diff_pred')
    l_x4_next_pred = L.ElemwiseMergeLayer([l_x4, l_x4_diff_pred], T.add, name='x4_next_pred')

    l_x3_next_pred = LT.Deconv2DLayer(l_x4_next_pred,
                                   num_filters=96,
                                   filter_size=3,
                                   stride=2,
                                   nonlinearity=None,
                                   name='x3_next_pred')
    l_x2_next_pred = LT.Deconv2DLayer(l_x3_next_pred, num_filters=160, filter_size=1, flip_filters=False,
                                   name='x2_next_pred')
    l_x1_next_pred = LT.Deconv2DLayer(l_x2_next_pred, num_filters=192, filter_size=1, flip_filters=False,
                                   name='x1_next_pred')
    l_x0_next_pred = LT.Deconv2DLayer(l_x1_next_pred,
                                   num_filters=3,
                                   filter_size=5,
                                   pad=2,
                                   flip_filters=False,
                                   nonlinearity=None,
                                   name='x0_next_pred')

    loss_fn = lambda X, X_pred: ((X - X_pred) ** 2).mean(axis=0).sum() / 2.
    loss = loss_fn(X_next_var, lasagne.layers.get_output(l_x0_next_pred))

    net_name = 'SmallCifar10ninNet'
    input_vars = OrderedDict([(var.name, var) for var in [X_var, U_var, X_diff_var]])
    pred_layers = OrderedDict([('x0_next_pred', l_x0_next_pred)])
    return net_name, input_vars, pred_layers, loss 
開發者ID:alexlee-gk,項目名稱:visual_dynamics,代碼行數:57,代碼來源:net_theano.py

示例15: get_net

# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import MaxPool2DLayer [as 別名]
def get_net():
    return NeuralNet(
            layers=[
                ('input', layers.InputLayer),
                ('conv1', Conv2DLayer),
                ('pool1', MaxPool2DLayer),
                ('dropout1', layers.DropoutLayer),
                ('conv2', Conv2DLayer),
                ('pool2', MaxPool2DLayer),
                ('dropout2', layers.DropoutLayer),
                ('conv3', Conv2DLayer),
                ('pool3', MaxPool2DLayer),
                ('dropout3', layers.DropoutLayer),
                ('hidden4', layers.DenseLayer),
                ('dropout4', layers.DropoutLayer),
                ('hidden5', layers.DenseLayer),
                ('output', layers.DenseLayer),
            ],
            input_shape=(None, 1, 96, 96),
            conv1_num_filters=32, conv1_filter_size=(3, 3), pool1_pool_size=(2, 2),
            dropout1_p=0.1,
            conv2_num_filters=64, conv2_filter_size=(2, 2), pool2_pool_size=(2, 2),
            dropout2_p=0.2,
            conv3_num_filters=128, conv3_filter_size=(2, 2), pool3_pool_size=(2, 2),
            dropout3_p=0.3,
            hidden4_num_units=1000,
            dropout4_p=0.5,
            hidden5_num_units=1000,
            output_num_units=30, output_nonlinearity=None,

            update_learning_rate=theano.shared(float32(0.03)),
            update_momentum=theano.shared(float32(0.9)),

            regression=True,
            batch_iterator_train=FlipBatchIterator(batch_size=128),
            on_epoch_finished=[
                AdjustVariable('update_learning_rate', start=0.03, stop=0.0001),
                AdjustVariable('update_momentum', start=0.9, stop=0.999),
                EarlyStopping(patience=200),
            ],
            max_epochs=3000,
            verbose=1,
    ) 
開發者ID:Alfredvc,項目名稱:cnn_workshop,代碼行數:45,代碼來源:network.py


注:本文中的lasagne.layers.MaxPool2DLayer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。