本文整理匯總了Python中lasagne.layers.ConcatLayer方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.ConcatLayer方法的具體用法?Python layers.ConcatLayer怎麽用?Python layers.ConcatLayer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類lasagne.layers
的用法示例。
在下文中一共展示了layers.ConcatLayer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: inceptionA
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ConcatLayer [as 別名]
def inceptionA(input_layer, nfilt):
# Corresponds to a modified version of figure 5 in the paper
l1 = bn_conv(input_layer, num_filters=nfilt[0][0], filter_size=1)
l2 = bn_conv(input_layer, num_filters=nfilt[1][0], filter_size=1)
l2 = bn_conv(l2, num_filters=nfilt[1][1], filter_size=5, pad=2)
l3 = bn_conv(input_layer, num_filters=nfilt[2][0], filter_size=1)
l3 = bn_conv(l3, num_filters=nfilt[2][1], filter_size=3, pad=1)
l3 = bn_conv(l3, num_filters=nfilt[2][2], filter_size=3, pad=1)
l4 = Pool2DLayer(
input_layer, pool_size=3, stride=1, pad=1, mode='average_exc_pad')
l4 = bn_conv(l4, num_filters=nfilt[3][0], filter_size=1)
return ConcatLayer([l1, l2, l3, l4])
示例2: inceptionC
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ConcatLayer [as 別名]
def inceptionC(input_layer, nfilt):
# Corresponds to figure 6 in the paper
l1 = bn_conv(input_layer, num_filters=nfilt[0][0], filter_size=1)
l2 = bn_conv(input_layer, num_filters=nfilt[1][0], filter_size=1)
l2 = bn_conv(l2, num_filters=nfilt[1][1], filter_size=(1, 7), pad=(0, 3))
l2 = bn_conv(l2, num_filters=nfilt[1][2], filter_size=(7, 1), pad=(3, 0))
l3 = bn_conv(input_layer, num_filters=nfilt[2][0], filter_size=1)
l3 = bn_conv(l3, num_filters=nfilt[2][1], filter_size=(7, 1), pad=(3, 0))
l3 = bn_conv(l3, num_filters=nfilt[2][2], filter_size=(1, 7), pad=(0, 3))
l3 = bn_conv(l3, num_filters=nfilt[2][3], filter_size=(7, 1), pad=(3, 0))
l3 = bn_conv(l3, num_filters=nfilt[2][4], filter_size=(1, 7), pad=(0, 3))
l4 = Pool2DLayer(
input_layer, pool_size=3, stride=1, pad=1, mode='average_exc_pad')
l4 = bn_conv(l4, num_filters=nfilt[3][0], filter_size=1)
return ConcatLayer([l1, l2, l3, l4])
示例3: __init__
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ConcatLayer [as 別名]
def __init__(self):
self.network = collections.OrderedDict()
self.network['img'] = InputLayer((None, 3, None, None))
self.network['seed'] = InputLayer((None, 3, None, None))
config, params = self.load_model()
self.setup_generator(self.last_layer(), config)
if args.train:
concatenated = lasagne.layers.ConcatLayer([self.network['img'], self.network['out']], axis=0)
self.setup_perceptual(concatenated)
self.load_perceptual()
self.setup_discriminator()
self.load_generator(params)
self.compile()
#------------------------------------------------------------------------------------------------------------------
# Network Configuration
#------------------------------------------------------------------------------------------------------------------
示例4: setup_discriminator
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ConcatLayer [as 別名]
def setup_discriminator(self):
c = args.discriminator_size
self.make_layer('disc1.1', batch_norm(self.network['conv1_2']), 1*c, filter_size=(5,5), stride=(2,2), pad=(2,2))
self.make_layer('disc1.2', self.last_layer(), 1*c, filter_size=(5,5), stride=(2,2), pad=(2,2))
self.make_layer('disc2', batch_norm(self.network['conv2_2']), 2*c, filter_size=(5,5), stride=(2,2), pad=(2,2))
self.make_layer('disc3', batch_norm(self.network['conv3_2']), 3*c, filter_size=(3,3), stride=(1,1), pad=(1,1))
hypercolumn = ConcatLayer([self.network['disc1.2>'], self.network['disc2>'], self.network['disc3>']])
self.make_layer('disc4', hypercolumn, 4*c, filter_size=(1,1), stride=(1,1), pad=(0,0))
self.make_layer('disc5', self.last_layer(), 3*c, filter_size=(3,3), stride=(2,2))
self.make_layer('disc6', self.last_layer(), 2*c, filter_size=(1,1), stride=(1,1), pad=(0,0))
self.network['disc'] = batch_norm(ConvLayer(self.last_layer(), 1, filter_size=(1,1),
nonlinearity=lasagne.nonlinearities.linear))
#------------------------------------------------------------------------------------------------------------------
# Input / Output
#------------------------------------------------------------------------------------------------------------------
示例5: build_inception_module
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ConcatLayer [as 別名]
def build_inception_module(name, input_layer, nfilters):
# nfilters: (pool_proj, 1x1, 3x3_reduce, 3x3, 5x5_reduce, 5x5)
net = {}
net['pool'] = PoolLayerDNN(input_layer, pool_size=3, stride=1, pad=1)
net['pool_proj'] = ConvLayer(
net['pool'], nfilters[0], 1, flip_filters=False)
net['1x1'] = ConvLayer(input_layer, nfilters[1], 1, flip_filters=False)
net['3x3_reduce'] = ConvLayer(
input_layer, nfilters[2], 1, flip_filters=False)
net['3x3'] = ConvLayer(
net['3x3_reduce'], nfilters[3], 3, pad=1, flip_filters=False)
net['5x5_reduce'] = ConvLayer(
input_layer, nfilters[4], 1, flip_filters=False)
net['5x5'] = ConvLayer(
net['5x5_reduce'], nfilters[5], 5, pad=2, flip_filters=False)
net['output'] = ConcatLayer([
net['1x1'],
net['3x3'],
net['5x5'],
net['pool_proj'],
])
return {'{}/{}'.format(name, k): v for k, v in net.items()}
示例6: inceptionB
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ConcatLayer [as 別名]
def inceptionB(input_layer, nfilt):
# Corresponds to a modified version of figure 10 in the paper
l1 = bn_conv(input_layer, num_filters=nfilt[0][0], filter_size=3, stride=2)
l2 = bn_conv(input_layer, num_filters=nfilt[1][0], filter_size=1)
l2 = bn_conv(l2, num_filters=nfilt[1][1], filter_size=3, pad=1)
l2 = bn_conv(l2, num_filters=nfilt[1][2], filter_size=3, stride=2)
l3 = Pool2DLayer(input_layer, pool_size=3, stride=2)
return ConcatLayer([l1, l2, l3])
示例7: inceptionD
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ConcatLayer [as 別名]
def inceptionD(input_layer, nfilt):
# Corresponds to a modified version of figure 10 in the paper
l1 = bn_conv(input_layer, num_filters=nfilt[0][0], filter_size=1)
l1 = bn_conv(l1, num_filters=nfilt[0][1], filter_size=3, stride=2)
l2 = bn_conv(input_layer, num_filters=nfilt[1][0], filter_size=1)
l2 = bn_conv(l2, num_filters=nfilt[1][1], filter_size=(1, 7), pad=(0, 3))
l2 = bn_conv(l2, num_filters=nfilt[1][2], filter_size=(7, 1), pad=(3, 0))
l2 = bn_conv(l2, num_filters=nfilt[1][3], filter_size=3, stride=2)
l3 = Pool2DLayer(input_layer, pool_size=3, stride=2)
return ConcatLayer([l1, l2, l3])
示例8: create_network
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ConcatLayer [as 別名]
def create_network():
l = 1000
pool_size = 5
test_size1 = 13
test_size2 = 7
test_size3 = 5
kernel1 = 128
kernel2 = 128
kernel3 = 128
layer1 = InputLayer(shape=(None, 1, 4, l+1024))
layer2_1 = SliceLayer(layer1, indices=slice(0, l), axis = -1)
layer2_2 = SliceLayer(layer1, indices=slice(l, None), axis = -1)
layer2_3 = SliceLayer(layer2_2, indices = slice(0,4), axis = -2)
layer2_f = FlattenLayer(layer2_3)
layer3 = Conv2DLayer(layer2_1,num_filters = kernel1, filter_size = (4,test_size1))
layer4 = Conv2DLayer(layer3,num_filters = kernel1, filter_size = (1,test_size1))
layer5 = Conv2DLayer(layer4,num_filters = kernel1, filter_size = (1,test_size1))
layer6 = MaxPool2DLayer(layer5, pool_size = (1,pool_size))
layer7 = Conv2DLayer(layer6,num_filters = kernel2, filter_size = (1,test_size2))
layer8 = Conv2DLayer(layer7,num_filters = kernel2, filter_size = (1,test_size2))
layer9 = Conv2DLayer(layer8,num_filters = kernel2, filter_size = (1,test_size2))
layer10 = MaxPool2DLayer(layer9, pool_size = (1,pool_size))
layer11 = Conv2DLayer(layer10,num_filters = kernel3, filter_size = (1,test_size3))
layer12 = Conv2DLayer(layer11,num_filters = kernel3, filter_size = (1,test_size3))
layer13 = Conv2DLayer(layer12,num_filters = kernel3, filter_size = (1,test_size3))
layer14 = MaxPool2DLayer(layer13, pool_size = (1,pool_size))
layer14_d = DenseLayer(layer14, num_units= 256)
layer3_2 = DenseLayer(layer2_f, num_units = 128)
layer15 = ConcatLayer([layer14_d,layer3_2])
layer16 = DropoutLayer(layer15,p=0.5)
layer17 = DenseLayer(layer16, num_units=256)
network = DenseLayer(layer17, num_units= 2, nonlinearity=softmax)
return network
#random search to initialize the weights
示例9: create_network
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ConcatLayer [as 別名]
def create_network():
l = 1000
pool_size = 5
test_size1 = 13
test_size2 = 7
test_size3 = 5
kernel1 = 128
kernel2 = 128
kernel3 = 128
layer1 = InputLayer(shape=(None, 1, 4, l+1024))
layer2_1 = SliceLayer(layer1, indices=slice(0, l), axis = -1)
layer2_2 = SliceLayer(layer1, indices=slice(l, None), axis = -1)
layer2_3 = SliceLayer(layer2_2, indices = slice(0,4), axis = -2)
layer2_f = FlattenLayer(layer2_3)
layer3 = Conv2DLayer(layer2_1,num_filters = kernel1, filter_size = (4,test_size1))
layer4 = Conv2DLayer(layer3,num_filters = kernel1, filter_size = (1,test_size1))
layer5 = Conv2DLayer(layer4,num_filters = kernel1, filter_size = (1,test_size1))
layer6 = MaxPool2DLayer(layer5, pool_size = (1,pool_size))
layer7 = Conv2DLayer(layer6,num_filters = kernel2, filter_size = (1,test_size2))
layer8 = Conv2DLayer(layer7,num_filters = kernel2, filter_size = (1,test_size2))
layer9 = Conv2DLayer(layer8,num_filters = kernel2, filter_size = (1,test_size2))
layer10 = MaxPool2DLayer(layer9, pool_size = (1,pool_size))
layer11 = Conv2DLayer(layer10,num_filters = kernel3, filter_size = (1,test_size3))
layer12 = Conv2DLayer(layer11,num_filters = kernel3, filter_size = (1,test_size3))
layer13 = Conv2DLayer(layer12,num_filters = kernel3, filter_size = (1,test_size3))
layer14 = MaxPool2DLayer(layer13, pool_size = (1,pool_size))
layer14_d = DenseLayer(layer14, num_units= 256)
layer3_2 = DenseLayer(layer2_f, num_units = 128)
layer15 = ConcatLayer([layer14_d,layer3_2])
#layer16 = DropoutLayer(layer15,p=0.5)
layer17 = DenseLayer(layer15, num_units=256)
network = DenseLayer(layer17, num_units= 1, nonlinearity=None)
return network
#random search to initialize the weights
示例10: __init__
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ConcatLayer [as 別名]
def __init__(self, incoming, channel_layer_class, name=None, **channel_layer_kwargs):
super(ChannelwiseLayer, self).__init__(incoming, name=name)
self.channel_layer_class = channel_layer_class
self.channel_incomings = []
self.channel_outcomings = []
for channel in range(lasagne.layers.get_output_shape(incoming)[0]):
channel_incoming = L.SliceLayer(incoming, indices=slice(channel, channel+1), axis=1,
name='%s.%s%d' % (name, 'slice', channel) if name is not None else None)
channel_outcoming = channel_layer_class(channel_incoming,
name='%s.%s%d' % (name, 'op', channel) if name is not None else None,
**channel_layer_kwargs)
self.channel_incomings.append(channel_incoming)
self.channel_outcomings.append(channel_outcoming)
self.outcoming = L.ConcatLayer(self.channel_outcomings, axis=1,
name='%s.%s' % (name, 'concat') if name is not None else None)
示例11: build_convpool_conv1d
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ConcatLayer [as 別名]
def build_convpool_conv1d(input_vars, nb_classes, imsize=32, n_colors=3, n_timewin=7):
"""
Builds the complete network with 1D-conv layer to integrate time from sequences of EEG images.
:param input_vars: list of EEG images (one image per time window)
:param nb_classes: number of classes
:param imsize: size of the input image (assumes a square input)
:param n_colors: number of color channels in the image
:param n_timewin: number of time windows in the snippet
:return: a pointer to the output of last layer
"""
convnets = []
w_init = None
# Build 7 parallel CNNs with shared weights
for i in range(n_timewin):
if i == 0:
convnet, w_init = build_cnn(input_vars[i], imsize=imsize, n_colors=n_colors)
else:
convnet, _ = build_cnn(input_vars[i], w_init=w_init, imsize=imsize, n_colors=n_colors)
convnets.append(FlattenLayer(convnet))
# at this point convnets shape is [numTimeWin][n_samples, features]
# we want the shape to be [n_samples, features, numTimeWin]
convpool = ConcatLayer(convnets)
convpool = ReshapeLayer(convpool, ([0], n_timewin, get_output_shape(convnets[0])[1]))
convpool = DimshuffleLayer(convpool, (0, 2, 1))
# input to 1D convlayer should be in (batch_size, num_input_channels, input_length)
convpool = Conv1DLayer(convpool, 64, 3)
# A fully-connected layer of 512 units with 50% dropout on its inputs:
convpool = DenseLayer(lasagne.layers.dropout(convpool, p=.5),
num_units=512, nonlinearity=lasagne.nonlinearities.rectify)
# And, finally, the output layer with 50% dropout on its inputs:
convpool = DenseLayer(lasagne.layers.dropout(convpool, p=.5),
num_units=nb_classes, nonlinearity=lasagne.nonlinearities.softmax)
return convpool
示例12: build_convpool_lstm
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ConcatLayer [as 別名]
def build_convpool_lstm(input_vars, nb_classes, grad_clip=110, imsize=32, n_colors=3, n_timewin=7):
"""
Builds the complete network with LSTM layer to integrate time from sequences of EEG images.
:param input_vars: list of EEG images (one image per time window)
:param nb_classes: number of classes
:param grad_clip: the gradient messages are clipped to the given value during
the backward pass.
:param imsize: size of the input image (assumes a square input)
:param n_colors: number of color channels in the image
:param n_timewin: number of time windows in the snippet
:return: a pointer to the output of last layer
"""
convnets = []
w_init = None
# Build 7 parallel CNNs with shared weights
for i in range(n_timewin):
if i == 0:
convnet, w_init = build_cnn(input_vars[i], imsize=imsize, n_colors=n_colors)
else:
convnet, _ = build_cnn(input_vars[i], w_init=w_init, imsize=imsize, n_colors=n_colors)
convnets.append(FlattenLayer(convnet))
# at this point convnets shape is [numTimeWin][n_samples, features]
# we want the shape to be [n_samples, features, numTimeWin]
convpool = ConcatLayer(convnets)
convpool = ReshapeLayer(convpool, ([0], n_timewin, get_output_shape(convnets[0])[1]))
# Input to LSTM should have the shape as (batch size, SEQ_LENGTH, num_features)
convpool = LSTMLayer(convpool, num_units=128, grad_clipping=grad_clip,
nonlinearity=lasagne.nonlinearities.tanh)
# We only need the final prediction, we isolate that quantity and feed it
# to the next layer.
convpool = SliceLayer(convpool, -1, 1) # Selecting the last prediction
# A fully-connected layer of 256 units with 50% dropout on its inputs:
convpool = DenseLayer(lasagne.layers.dropout(convpool, p=.5),
num_units=256, nonlinearity=lasagne.nonlinearities.rectify)
# And, finally, the output layer with 50% dropout on its inputs:
convpool = DenseLayer(lasagne.layers.dropout(convpool, p=.5),
num_units=nb_classes, nonlinearity=lasagne.nonlinearities.softmax)
return convpool
示例13: InceptionUpscaleLayer
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ConcatLayer [as 別名]
def InceptionUpscaleLayer(incoming,param_dict,block_name):
branch = [0]*len(param_dict)
# Loop across branches
for i,dict in enumerate(param_dict):
for j,style in enumerate(dict['style']): # Loop up branch
branch[i] = TC2D(
incoming = branch[i] if j else incoming,
num_filters = dict['num_filters'][j],
filter_size = dict['filter_size'][j],
crop = dict['pad'][j] if 'pad' in dict else None,
stride = dict['stride'][j],
W = initmethod('relu'),
nonlinearity = dict['nonlinearity'][j],
name = block_name+'_'+str(i)+'_'+str(j)) if style=='convolutional'\
else NL(
incoming = lasagne.layers.dnn.Pool2DDNNLayer(
incoming = lasagne.layers.Upscale2DLayer(
incoming=incoming if j == 0 else branch[i],
scale_factor = dict['stride'][j]),
pool_size = dict['filter_size'][j],
stride = [1,1],
mode = dict['mode'][j],
pad = dict['pad'][j],
name = block_name+'_'+str(i)+'_'+str(j)),
nonlinearity = dict['nonlinearity'][j])
# Apply Batchnorm
branch[i] = BN(branch[i],name = block_name+'_bnorm_'+str(i)+'_'+str(j)) if dict['bnorm'][j] else branch[i]
# Concatenate Sublayers
return CL(incomings=branch,name=block_name)
# Convenience function to efficiently generate param dictionaries for use with InceptioNlayer
示例14: build_convpool_mix
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ConcatLayer [as 別名]
def build_convpool_mix(input_vars, nb_classes, grad_clip=110, imsize=32, n_colors=3, n_timewin=7):
"""
Builds the complete network with LSTM and 1D-conv layers combined
:param input_vars: list of EEG images (one image per time window)
:param nb_classes: number of classes
:param grad_clip: the gradient messages are clipped to the given value during
the backward pass.
:param imsize: size of the input image (assumes a square input)
:param n_colors: number of color channels in the image
:param n_timewin: number of time windows in the snippet
:return: a pointer to the output of last layer
"""
convnets = []
w_init = None
# Build 7 parallel CNNs with shared weights
for i in range(n_timewin):
if i == 0:
convnet, w_init = build_cnn(input_vars[i], imsize=imsize, n_colors=n_colors)
else:
convnet, _ = build_cnn(input_vars[i], w_init=w_init, imsize=imsize, n_colors=n_colors)
convnets.append(FlattenLayer(convnet))
# at this point convnets shape is [numTimeWin][n_samples, features]
# we want the shape to be [n_samples, features, numTimeWin]
convpool = ConcatLayer(convnets)
convpool = ReshapeLayer(convpool, ([0], n_timewin, get_output_shape(convnets[0])[1]))
reformConvpool = DimshuffleLayer(convpool, (0, 2, 1))
# input to 1D convlayer should be in (batch_size, num_input_channels, input_length)
conv_out = Conv1DLayer(reformConvpool, 64, 3)
conv_out = FlattenLayer(conv_out)
# Input to LSTM should have the shape as (batch size, SEQ_LENGTH, num_features)
lstm = LSTMLayer(convpool, num_units=128, grad_clipping=grad_clip,
nonlinearity=lasagne.nonlinearities.tanh)
lstm_out = SliceLayer(lstm, -1, 1)
# Merge 1D-Conv and LSTM outputs
dense_input = ConcatLayer([conv_out, lstm_out])
# A fully-connected layer of 256 units with 50% dropout on its inputs:
convpool = DenseLayer(lasagne.layers.dropout(dense_input, p=.5),
num_units=512, nonlinearity=lasagne.nonlinearities.rectify)
# And, finally, the 10-unit output layer with 50% dropout on its inputs:
convpool = DenseLayer(convpool,
num_units=nb_classes, nonlinearity=lasagne.nonlinearities.softmax)
return convpool
示例15: setup_model
# 需要導入模塊: from lasagne import layers [as 別名]
# 或者: from lasagne.layers import ConcatLayer [as 別名]
def setup_model(self, input=None):
"""Use lasagne to create a network of convolution layers, first using VGG19 as the framework
and then adding augmentations for Semantic Style Transfer.
"""
net, self.channels = {}, {}
# Primary network for the main image. These are convolution only, and stop at layer 4_2 (rest unused).
net['img'] = input or InputLayer((None, 3, None, None))
net['conv1_1'] = ConvLayer(net['img'], 64, 3, pad=1)
net['conv1_2'] = ConvLayer(net['conv1_1'], 64, 3, pad=1)
net['pool1'] = PoolLayer(net['conv1_2'], 2, mode='average_exc_pad')
net['conv2_1'] = ConvLayer(net['pool1'], 128, 3, pad=1)
net['conv2_2'] = ConvLayer(net['conv2_1'], 128, 3, pad=1)
net['pool2'] = PoolLayer(net['conv2_2'], 2, mode='average_exc_pad')
net['conv3_1'] = ConvLayer(net['pool2'], 256, 3, pad=1)
net['conv3_2'] = ConvLayer(net['conv3_1'], 256, 3, pad=1)
net['conv3_3'] = ConvLayer(net['conv3_2'], 256, 3, pad=1)
net['conv3_4'] = ConvLayer(net['conv3_3'], 256, 3, pad=1)
net['pool3'] = PoolLayer(net['conv3_4'], 2, mode='average_exc_pad')
net['conv4_1'] = ConvLayer(net['pool3'], 512, 3, pad=1)
net['conv4_2'] = ConvLayer(net['conv4_1'], 512, 3, pad=1)
net['conv4_3'] = ConvLayer(net['conv4_2'], 512, 3, pad=1)
net['conv4_4'] = ConvLayer(net['conv4_3'], 512, 3, pad=1)
net['pool4'] = PoolLayer(net['conv4_4'], 2, mode='average_exc_pad')
net['conv5_1'] = ConvLayer(net['pool4'], 512, 3, pad=1)
net['conv5_2'] = ConvLayer(net['conv5_1'], 512, 3, pad=1)
net['conv5_3'] = ConvLayer(net['conv5_2'], 512, 3, pad=1)
net['conv5_4'] = ConvLayer(net['conv5_3'], 512, 3, pad=1)
net['main'] = net['conv5_4']
# Auxiliary network for the semantic layers, and the nearest neighbors calculations.
net['map'] = InputLayer((1, 1, None, None))
for j, i in itertools.product(range(5), range(4)):
if j < 2 and i > 1: continue
suffix = '%i_%i' % (j+1, i+1)
if i == 0:
net['map%i'%(j+1)] = PoolLayer(net['map'], 2**j, mode='average_exc_pad')
self.channels[suffix] = net['conv'+suffix].num_filters
if args.semantic_weight > 0.0:
net['sem'+suffix] = ConcatLayer([net['conv'+suffix], net['map%i'%(j+1)]])
else:
net['sem'+suffix] = net['conv'+suffix]
net['dup'+suffix] = InputLayer(net['sem'+suffix].output_shape)
net['nn'+suffix] = ConvLayer(net['dup'+suffix], 1, 3, b=None, pad=0, flip_filters=False)
self.network = net