當前位置: 首頁>>代碼示例>>Python>>正文


Python lasagne.init方法代碼示例

本文整理匯總了Python中lasagne.init方法的典型用法代碼示例。如果您正苦於以下問題:Python lasagne.init方法的具體用法?Python lasagne.init怎麽用?Python lasagne.init使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在lasagne的用法示例。


在下文中一共展示了lasagne.init方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: mdclW

# 需要導入模塊: import lasagne [as 別名]
# 或者: from lasagne import init [as 別名]
def mdclW(num_filters,num_channels,filter_size,winit,name,scales):
    # Coefficient Initializer
    sinit = lasagne.init.Constant(1.0/(1+len(scales)))
    # Total filter size
    size = filter_size + (filter_size-1)*(scales[-1]-1)
    # Multiscale Dilated Filter 
    W = T.zeros((num_filters,num_channels,size,size))
    # Undilated Base Filter
    baseW = theano.shared(lasagne.utils.floatX(winit.sample((num_filters,num_channels,filter_size,filter_size))),name=name+'.W')
    for scale in enumerate(scales[::-1]): # enumerate backwards so that we place the main filter on top
            W = T.set_subtensor(W[:,:,scales[-1]-scale:size-scales[-1]+scale:scale,scales[-1]-scale:size-scales[-1]+scale:scale],
                                  baseW*theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)), name+'.coeff_'+str(scale)).dimshuffle(0,'x','x','x'))
    return W

# Subpixel Upsample Layer from (https://arxiv.org/abs/1609.05158)
# This layer uses a set of r^2 set_subtensor calls to reorganize the tensor in a subpixel-layer upscaling style
# as done in the ESPCN Magic ony paper for super-resolution.
# r is the upscale factor.
# c is the number of output channels. 
開發者ID:ajbrock,項目名稱:Neural-Photo-Editor,代碼行數:21,代碼來源:layers.py

示例2: __init__

# 需要導入模塊: import lasagne [as 別名]
# 或者: from lasagne import init [as 別名]
def __init__(self, incoming, RMAX,DMAX,axes='auto', epsilon=1e-4, alpha=0.1,
                 beta=lasagne.init.Constant(0), gamma=lasagne.init.Constant(1),
                 mean=lasagne.init.Constant(0), inv_std=lasagne.init.Constant(1), **kwargs):
        super(BatchReNormDNNLayer, self).__init__(
                incoming, axes, epsilon, alpha, beta, gamma, mean, inv_std,
                **kwargs)
        all_but_second_axis = (0,) + tuple(range(2, len(self.input_shape)))
        
        self.RMAX,self.DMAX = RMAX,DMAX
        
        if self.axes not in ((0,), all_but_second_axis):
            raise ValueError("BatchNormDNNLayer only supports normalization "
                             "across the first axis, or across all but the "
                             "second axis, got axes=%r" % (axes,)) 
開發者ID:ajbrock,項目名稱:Neural-Photo-Editor,代碼行數:16,代碼來源:layers.py

示例3: get_output_for

# 需要導入模塊: import lasagne [as 別名]
# 或者: from lasagne import init [as 別名]
def get_output_for(self,input, **kwargs):
        if input.ndim > 2:
            input = input.flatten(2)
        
        activation = T.dot(input, self.W*self.weights_mask)            
        
        if self.b is not None:
            activation = activation + self.b.dimshuffle('x', 0)
        return self.nonlinearity(activation)        

# Conditioning Masked Layer 
# Currently not used.       
# class CML(MaskedLayer):

    # def __init__(self, incoming, num_units, mask_generator,use_cond_mask=False,U=lasagne.init.GlorotUniform(),W=lasagne.init.GlorotUniform(),
                 # b=init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify, **kwargs):
        # super(CML, self).__init__(incoming, num_units, mask_generator,W,
                 # b, nonlinearity,**kwargs)
        
        # self.use_cond_mask=use_cond_mask
        # if use_cond_mask:            
            # self.U = self.add_param(spec = U,
                                    # shape = (num_inputs, num_units),
                                    # name='U',
                                    # trainable=True,
                                    # regularizable=False)theano.shared(value=self.weights_initialization((self.n_in, self.n_out)), name=self.name+'U', borrow=True)
            # self.add_param(self.U,name = 
    # def get_output_for(self,input,**kwargs):
       # lin = self.lin_output = T.dot(input, self.W * self.weights_mask) + self.b  
       # if self.use_cond_mask:
           # lin = lin+T.dot(T.ones_like(input), self.U * self.weights_mask)
       # return lin if self._activation is None else self._activation(lin) 


       
# Made layer, adopted from M.Germain 
開發者ID:ajbrock,項目名稱:Neural-Photo-Editor,代碼行數:38,代碼來源:layers.py

示例4: main

# 需要導入模塊: import lasagne [as 別名]
# 或者: from lasagne import init [as 別名]
def main():
    voc, full_embeddings = sys.argv[1], sys.argv[2]

    voc = set([line.strip() for line in open(voc, 'r')] + ['_UNK'])

    # get all embeddings from full embeddings
    embeddings = dict()
    for i, line in enumerate(open(full_embeddings, 'r')):
        parts = line.rstrip().split()
        word = parts[0]
        if word in voc:
            # print(parts[1:])
            try:
                embeddings[word] = list(map(float, parts[1:]))
            except Exception as e:
                print('cannot parse line %i' % i, file=sys.stderr)

    # estimate dim
    dim = len(list(embeddings.values())[0])
    if dim == 0:
        raise Exception('embedding dim is 0, probably parsing error')

    # init unk
    embeddings['_UNK'] = initializer((dim,))

    # handle missing embeddings
    for word in voc:
        if word not in embeddings:
            print("no embedding for %s, skipping it " % word, file=sys.stderr)
            emb = initializer((dim,))
        else:
            emb = embeddings[word]
        print(word + '\t' + ' '.join(map(str, emb))) 
開發者ID:diegma,項目名稱:neural-dep-srl,代碼行數:35,代碼來源:glove_select.py

示例5: _sample_trained_minibatch_gan

# 需要導入模塊: import lasagne [as 別名]
# 或者: from lasagne import init [as 別名]
def _sample_trained_minibatch_gan(params_file, n, batch_size, rs):
    import lasagne
    from lasagne.init import Normal
    import lasagne.layers as ll
    import theano as th
    from theano.sandbox.rng_mrg import MRG_RandomStreams
    import theano.tensor as T

    import nn

    theano_rng = MRG_RandomStreams(rs.randint(2 ** 15))
    lasagne.random.set_rng(np.random.RandomState(rs.randint(2 ** 15)))

    noise_dim = (batch_size, 100)
    noise = theano_rng.uniform(size=noise_dim)
    ls = [ll.InputLayer(shape=noise_dim, input_var=noise)]
    ls.append(nn.batch_norm(
        ll.DenseLayer(ls[-1], num_units=4*4*512, W=Normal(0.05),
                      nonlinearity=nn.relu),
        g=None))
    ls.append(ll.ReshapeLayer(ls[-1], (batch_size,512,4,4)))
    ls.append(nn.batch_norm(
        nn.Deconv2DLayer(ls[-1], (batch_size,256,8,8), (5,5), W=Normal(0.05),
                         nonlinearity=nn.relu),
        g=None)) # 4 -> 8
    ls.append(nn.batch_norm(
        nn.Deconv2DLayer(ls[-1], (batch_size,128,16,16), (5,5), W=Normal(0.05),
                         nonlinearity=nn.relu),
        g=None)) # 8 -> 16
    ls.append(nn.weight_norm(
        nn.Deconv2DLayer(ls[-1], (batch_size,3,32,32), (5,5), W=Normal(0.05),
                         nonlinearity=T.tanh),
        train_g=True, init_stdv=0.1)) # 16 -> 32
    gen_dat = ll.get_output(ls[-1])

    with np.load(params_file) as d:
        params = [d['arr_{}'.format(i)] for i in range(9)]
    ll.set_all_param_values(ls[-1], params, trainable=True)

    sample_batch = th.function(inputs=[], outputs=gen_dat)
    samps = []
    while len(samps) < n:
        samps.extend(sample_batch())
    samps = np.array(samps[:n])
    return samps 
開發者ID:djsutherland,項目名稱:opt-mmd,代碼行數:47,代碼來源:generate.py

示例6: MDCL

# 需要導入模塊: import lasagne [as 別名]
# 或者: from lasagne import init [as 別名]
def MDCL(incoming,num_filters,scales,name,dnn=True):
    if dnn:
        from lasagne.layers.dnn import Conv2DDNNLayer as C2D
    # W initialization method--this should also work as Orthogonal('relu'), but I have yet to validate that as thoroughly.
    winit = initmethod(0.02)
    
    # Initialization method for the coefficients
    sinit = lasagne.init.Constant(1.0/(1+len(scales)))
    
    # Number of incoming channels
    ni =lasagne.layers.get_output_shape(incoming)[1]
    
    # Weight parameter--the primary parameter for this block
    W = theano.shared(lasagne.utils.floatX(winit.sample((num_filters,lasagne.layers.get_output_shape(incoming)[1],3,3))),name=name+'W')
    
    # Primary Convolution Layer--No Dilation
    n = C2D(incoming = incoming,
                            num_filters = num_filters,
                            filter_size = [3,3],
                            stride = [1,1],
                            pad = (1,1),
                            W = W*theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)), name+'_coeff_base').dimshuffle(0,'x','x','x'), # Note the broadcasting dimshuffle for the num_filter scalars.
                            b = None,
                            nonlinearity = None,
                            name = name+'base'
                        )
    # List of remaining layers. This should probably just all be concatenated into a single list rather than being a separate deal.
    nd = []    
    for i,scale in enumerate(scales):
        
        # I don't think 0 dilation is technically defined (or if it is it's just the regular filter) but I use it here as a convenient keyword to grab the 1x1 mean conv.
        if scale==0:
            nd.append(C2D(incoming = incoming,
                            num_filters = num_filters,
                            filter_size = [1,1],
                            stride = [1,1],
                            pad = (0,0),
                            W = T.mean(W,axis=[2,3]).dimshuffle(0,1,'x','x')*theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)), name+'_coeff_1x1').dimshuffle(0,'x','x','x'),
                            b = None,
                            nonlinearity = None,
                            name = name+str(scale)))
        # Note the dimshuffles in this layer--these are critical as the current DilatedConv2D implementation uses a backward pass.
        else:
            nd.append(lasagne.layers.DilatedConv2DLayer(incoming = lasagne.layers.PadLayer(incoming = incoming, width=(scale,scale)),
                                num_filters = num_filters,
                                filter_size = [3,3],
                                dilation=(scale,scale),
                                W = W.dimshuffle(1,0,2,3)*theano.shared(lasagne.utils.floatX(sinit.sample(num_filters)), name+'_coeff_'+str(scale)).dimshuffle('x',0,'x','x'),
                                b = None,
                                nonlinearity = None,
                                name =  name+str(scale)))
    return ESL(nd+[n])

# MDC-based Upsample Layer.
# This is a prototype I don't make use of extensively. It's operational but it doesn't seem to improve results yet. 
開發者ID:ajbrock,項目名稱:Neural-Photo-Editor,代碼行數:57,代碼來源:layers.py


注:本文中的lasagne.init方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。