當前位置: 首頁>>代碼示例>>Python>>正文


Python init.GlorotUniform方法代碼示例

本文整理匯總了Python中lasagne.init.GlorotUniform方法的典型用法代碼示例。如果您正苦於以下問題:Python init.GlorotUniform方法的具體用法?Python init.GlorotUniform怎麽用?Python init.GlorotUniform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在lasagne.init的用法示例。


在下文中一共展示了init.GlorotUniform方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import GlorotUniform [as 別名]
def __init__(self, incoming, num_labels, mask_input=None, W=init.GlorotUniform(), b=init.Constant(0.), **kwargs):
        # This layer inherits from a MergeLayer, because it can have two
        # inputs - the layer input, and the mask.
        # We will just provide the layer input as incomings, unless a mask input was provided.

        self.input_shape = incoming.output_shape
        incomings = [incoming]
        self.mask_incoming_index = -1
        if mask_input is not None:
            incomings.append(mask_input)
            self.mask_incoming_index = 1

        super(CRFLayer, self).__init__(incomings, **kwargs)
        self.num_labels = num_labels + 1
        self.pad_label_index = num_labels

        num_inputs = self.input_shape[2]
        self.W = self.add_param(W, (num_inputs, self.num_labels, self.num_labels), name="W")

        if b is None:
            self.b = None
        else:
            self.b = self.add_param(b, (self.num_labels, self.num_labels), name="b", regularizable=False) 
開發者ID:XuezheMax,項目名稱:LasagneNLP,代碼行數:25,代碼來源:crf.py

示例2: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import GlorotUniform [as 別名]
def __init__(self, incoming_vertex, incoming_edge, num_filters, filter_size, W=init.GlorotUniform(),
                 b=init.Constant(0.), nonlinearity=nonlinearities.rectify, **kwargs):
        self.vertex_shape = incoming_vertex.output_shape
        self.edge_shape = incoming_edge.output_shape

        self.input_shape = incoming_vertex.output_shape
        incomings = [incoming_vertex, incoming_edge]
        self.vertex_incoming_index = 0
        self.edge_incoming_index = 1
        super(GraphConvLayer, self).__init__(incomings, **kwargs)
        if nonlinearity is None:
            self.nonlinearity = nonlinearities.identity
        else:
            self.nonlinearity = nonlinearity

        self.num_filters = num_filters
        self.filter_size = filter_size

        self.W = self.add_param(W, self.get_W_shape(), name="W")
        if b is None:
            self.b = None
        else:
            self.b = self.add_param(b, (num_filters,), name="b", regularizable=False) 
開發者ID:XuezheMax,項目名稱:LasagneNLP,代碼行數:25,代碼來源:graph.py

示例3: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import GlorotUniform [as 別名]
def __init__(self, incoming, W_h=init.GlorotUniform(), b_h=init.Constant(0.), W_t=init.GlorotUniform(),
                 b_t=init.Constant(0.), nonlinearity=nonlinearities.rectify, **kwargs):
        super(HighwayDenseLayer, self).__init__(incoming, **kwargs)
        self.nonlinearity = (nonlinearities.identity if nonlinearity is None
                             else nonlinearity)

        num_inputs = int(np.prod(self.input_shape[1:]))

        self.W_h = self.add_param(W_h, (num_inputs, num_inputs), name="W_h")
        if b_h is None:
            self.b_h = None
        else:
            self.b_h = self.add_param(b_h, (num_inputs,), name="b_h", regularizable=False)

        self.W_t = self.add_param(W_t, (num_inputs, num_inputs), name="W_t")
        if b_t is None:
            self.b_t = None
        else:
            self.b_t = self.add_param(b_t, (num_inputs,), name="b_t", regularizable=False) 
開發者ID:XuezheMax,項目名稱:LasagneNLP,代碼行數:21,代碼來源:highway.py

示例4: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import GlorotUniform [as 別名]
def __init__(self, incoming, num_labels, mask_input=None, W_h=init.GlorotUniform(), W_c=init.GlorotUniform(),
                 b=init.Constant(0.), **kwargs):
        # This layer inherits from a MergeLayer, because it can have two
        # inputs - the layer input, and the mask.
        # We will just provide the layer input as incomings, unless a mask input was provided.
        self.input_shape = incoming.output_shape
        incomings = [incoming]
        self.mask_incoming_index = -1
        if mask_input is not None:
            incomings.append(mask_input)
            self.mask_incoming_index = 1

        super(DepParserLayer, self).__init__(incomings, **kwargs)
        self.num_labels = num_labels
        num_inputs = self.input_shape[2]

        # add parameters
        self.W_h = self.add_param(W_h, (num_inputs, self.num_labels), name='W_h')

        self.W_c = self.add_param(W_c, (num_inputs, self.num_labels), name='W_c')

        if b is None:
            self.b = None
        else:
            self.b = self.add_param(b, (self.num_labels,), name='b', regularizable=False) 
開發者ID:XuezheMax,項目名稱:LasagneNLP,代碼行數:27,代碼來源:parser.py

示例5: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import GlorotUniform [as 別名]
def __init__(self, incoming, num_units, W=init.GlorotUniform(),
                 b=init.Constant(0.), nonlinearity=nonlinearities.rectify,
                 num_leading_axes=1, p=0.5, shared_axes=(), noise_samples=None,
                 **kwargs):
        super(DenseDropoutLayer, self).__init__(
            incoming, num_units, W, b, nonlinearity,
            num_leading_axes, **kwargs)

        self.p = p
        self.shared_axes = shared_axes

        # init randon number generator
        self._srng = RandomStreams(get_rng().randint(1, 2147462579))

        # initialize noise samples
        self.noise = self.init_noise(noise_samples) 
開發者ID:mcgillmrl,項目名稱:kusanagi,代碼行數:18,代碼來源:layers.py

示例6: smart_init

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import GlorotUniform [as 別名]
def smart_init(shape):
    if len(shape) > 1:
        return init.GlorotUniform()(shape)
    else:
        return init.Normal()(shape) 
開發者ID:ferrine,項目名稱:gelato,代碼行數:7,代碼來源:base.py

示例7: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import GlorotUniform [as 別名]
def __init__(self, W_in=init.GlorotUniform(), W_hid=init.GlorotUniform(),
                 W_cell=init.GlorotUniform(), b=init.Constant(0.),
                 nonlinearity=nonlinearities.sigmoid):
        self.W_in = W_in
        self.W_hid = W_hid
        # Don't store a cell weight vector when cell is None
        if W_cell is not None:
            self.W_cell = W_cell
        self.b = b
        # For the nonlinearity, if None is supplied, use identity
        if nonlinearity is None:
            self.nonlinearity = nonlinearities.identity
        else:
            self.nonlinearity = nonlinearity 
開發者ID:alexlee-gk,項目名稱:visual_dynamics,代碼行數:16,代碼來源:layers_theano.py

示例8: createCNN

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import GlorotUniform [as 別名]
def createCNN(self):
        net = {}
        net['input'] = lasagne.layers.InputLayer(shape=(None, self.nChannels, self.imageHeight, self.imageWidth), input_var=self.data)       
        print("Input shape: {0}".format(net['input'].output_shape))

        #STAGE 1
        net['s1_conv1_1'] = batch_norm(Conv2DLayer(net['input'], 64, 3, pad='same', W=GlorotUniform('relu')))
        net['s1_conv1_2'] = batch_norm(Conv2DLayer(net['s1_conv1_1'], 64, 3, pad='same', W=GlorotUniform('relu')))
        net['s1_pool1'] = lasagne.layers.Pool2DLayer(net['s1_conv1_2'], 2)

        net['s1_conv2_1'] = batch_norm(Conv2DLayer(net['s1_pool1'], 128, 3, pad=1, W=GlorotUniform('relu')))
        net['s1_conv2_2'] = batch_norm(Conv2DLayer(net['s1_conv2_1'], 128, 3, pad=1, W=GlorotUniform('relu')))
        net['s1_pool2'] = lasagne.layers.Pool2DLayer(net['s1_conv2_2'], 2)

        net['s1_conv3_1'] = batch_norm (Conv2DLayer(net['s1_pool2'], 256, 3, pad=1, W=GlorotUniform('relu')))
        net['s1_conv3_2'] = batch_norm (Conv2DLayer(net['s1_conv3_1'], 256, 3, pad=1, W=GlorotUniform('relu')))  
        net['s1_pool3'] = lasagne.layers.Pool2DLayer(net['s1_conv3_2'], 2)
        
        net['s1_conv4_1'] = batch_norm(Conv2DLayer(net['s1_pool3'], 512, 3, pad=1, W=GlorotUniform('relu')))
        net['s1_conv4_2'] = batch_norm (Conv2DLayer(net['s1_conv4_1'], 512, 3, pad=1, W=GlorotUniform('relu')))  
        net['s1_pool4'] = lasagne.layers.Pool2DLayer(net['s1_conv4_2'], 2)
                      
        net['s1_fc1_dropout'] = lasagne.layers.DropoutLayer(net['s1_pool4'], p=0.5)
        net['s1_fc1'] = batch_norm(lasagne.layers.DenseLayer(net['s1_fc1_dropout'], num_units=256, W=GlorotUniform('relu')))

        net['s1_output'] = lasagne.layers.DenseLayer(net['s1_fc1'], num_units=136, nonlinearity=None)
        net['s1_landmarks'] = LandmarkInitLayer(net['s1_output'], self.initLandmarks)

        for i in range(1, self.nStages):
            self.addDANStage(i + 1, net)

        net['output'] = net['s' + str(self.nStages) + '_landmarks']

        return net 
開發者ID:MarekKowalski,項目名稱:DeepAlignmentNetwork,代碼行數:36,代碼來源:FaceAlignmentTraining.py

示例9: createCNN

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import GlorotUniform [as 別名]
def createCNN(self):
        net = {}
        net['input'] = lasagne.layers.InputLayer(shape=(None, self.nChannels, self.imageHeight, self.imageWidth), input_var=self.data)       
        print("Input shape: {0}".format(net['input'].output_shape))

        #STAGE 1
        net['s1_conv1_1'] = batch_norm(Conv2DLayer(net['input'], 64, 3, pad='same', W=GlorotUniform('relu')))
        net['s1_conv1_2'] = batch_norm(Conv2DLayer(net['s1_conv1_1'], 64, 3, pad='same', W=GlorotUniform('relu')))
        net['s1_pool1'] = lasagne.layers.Pool2DLayer(net['s1_conv1_2'], 2)

        net['s1_conv2_1'] = batch_norm(Conv2DLayer(net['s1_pool1'], 128, 3, pad=1, W=GlorotUniform('relu')))
        net['s1_conv2_2'] = batch_norm(Conv2DLayer(net['s1_conv2_1'], 128, 3, pad=1, W=GlorotUniform('relu')))
        net['s1_pool2'] = lasagne.layers.Pool2DLayer(net['s1_conv2_2'], 2)

        net['s1_conv3_1'] = batch_norm (Conv2DLayer(net['s1_pool2'], 256, 3, pad=1, W=GlorotUniform('relu')))
        net['s1_conv3_2'] = batch_norm (Conv2DLayer(net['s1_conv3_1'], 256, 3, pad=1, W=GlorotUniform('relu')))  
        net['s1_pool3'] = lasagne.layers.Pool2DLayer(net['s1_conv3_2'], 2)
        
        net['s1_conv4_1'] = batch_norm(Conv2DLayer(net['s1_pool3'], 512, 3, pad=1, W=GlorotUniform('relu')))
        net['s1_conv4_2'] = batch_norm (Conv2DLayer(net['s1_conv4_1'], 512, 3, pad=1, W=GlorotUniform('relu')))  
        net['s1_pool4'] = lasagne.layers.Pool2DLayer(net['s1_conv4_2'], 2)
                      
        net['s1_fc1_dropout'] = lasagne.layers.DropoutLayer(net['s1_pool4'], p=0.5)
        net['s1_fc1'] = batch_norm(lasagne.layers.DenseLayer(net['s1_fc1_dropout'], num_units=256, W=GlorotUniform('relu')))

        net['s1_output'] = lasagne.layers.DenseLayer(net['s1_fc1'], num_units=136, nonlinearity=None)
        net['s1_landmarks'] = LandmarkInitLayer(net['s1_output'], self.initLandmarks)

        if self.confidenceLayer:
            net['s1_confidence'] = lasagne.layers.DenseLayer(net['s1_fc1'], num_units=2, W=GlorotUniform('relu'), nonlinearity=lasagne.nonlinearities.softmax)

        for i in range(1, self.nStages):
            self.addDANStage(i + 1, net)

        net['output'] = net['s' + str(self.nStages) + '_landmarks']
        if self.confidenceLayer:
            net['output'] = lasagne.layers.ConcatLayer([net['output'], net['s1_confidence']])

        return net 
開發者ID:MarekKowalski,項目名稱:DeepAlignmentNetwork,代碼行數:41,代碼來源:FaceAlignment.py

示例10: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import GlorotUniform [as 別名]
def __init__(self, args, incoming, num_units, W=init.GlorotUniform(),
                 b=init.Constant(0.), nonlinearity=nonlinearities.rectify,
                 num_leading_axes=1, **kwargs):
        super(DenseLayerWithReg, self).__init__(incoming, **kwargs)
        self.nonlinearity = (nonlinearities.identity if nonlinearity is None
                             else nonlinearity)

        self.num_units = num_units

        if num_leading_axes >= len(self.input_shape):
            raise ValueError(
                    "Got num_leading_axes=%d for a %d-dimensional input, "
                    "leaving no trailing axes for the dot product." %
                    (num_leading_axes, len(self.input_shape)))
        elif num_leading_axes < -len(self.input_shape):
            raise ValueError(
                    "Got num_leading_axes=%d for a %d-dimensional input, "
                    "requesting more trailing axes than there are input "
                    "dimensions." % (num_leading_axes, len(self.input_shape)))
        self.num_leading_axes = num_leading_axes

        if any(s is None for s in self.input_shape[num_leading_axes:]):
            raise ValueError(
                    "A DenseLayer requires a fixed input shape (except for "
                    "the leading axes). Got %r for num_leading_axes=%d." %
                    (self.input_shape, self.num_leading_axes))
        num_inputs = int(np.prod(self.input_shape[num_leading_axes:]))

        self.W = self.add_param(W, (num_inputs, num_units), name="W")
        if b is None:
            self.b = None
        else:
            self.b = self.add_param(b, (num_units,), name="b",
                                    regularizable=False)

        if args.regL1 is True:
            self.L1 = self.add_param(init.Constant(args.regInit['L1']),
                                     (num_inputs, num_units), name="L1")
        if args.regL2 is True:
            self.L2 = self.add_param(init.Constant(args.regInit['L2']),
                                     (num_inputs, num_units), name="L2") 
開發者ID:bigaidream-projects,項目名稱:drmad,代碼行數:43,代碼來源:layers.py

示例11: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import GlorotUniform [as 別名]
def __init__(self, incoming, num_filters, num_rot,
                 filter_size, stride=(1, 1),
                 border_mode="valid", untie_biases=False,
                 W=init.GlorotUniform(), b=init.Constant(0.),
                 nonlinearity=nonlinearities.rectify,
                 convolution=T.nnet.conv2d, **kwargs):
        super(RotConv, self).__init__(incoming, **kwargs)
        if nonlinearity is None:
            self.nonlinearity = nonlinearities.identity
        else:
            self.nonlinearity = nonlinearity

        self.num_filters = num_filters
        self.num_rot = num_rot;
        self.filter_size = as_tuple(filter_size, 2)
        self.stride = as_tuple(stride, 2)
        self.border_mode = border_mode
        self.untie_biases = untie_biases
        self.convolution = convolution

        if self.border_mode not in ['valid', 'full', 'same']:
            raise RuntimeError("Invalid border mode: '%s'" % self.border_mode)

        self.W = self.add_param(W, self.get_W_shape(), name="W")
        if b is None:
            self.b = None
        else:
            if self.untie_biases:
                biases_shape = (num_filters, self.output_shape[2], self.
                                output_shape[3])
            else:
                biases_shape = (num_filters,)
            self.b = self.add_param(b, biases_shape, name="b",
                                    regularizable=False) 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:36,代碼來源:rotconv.py

示例12: addConvModule

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import GlorotUniform [as 別名]
def addConvModule(nnet, num_filters, filter_size, pad='same', W_init=None, bias=True, pool_size=(2,2),
                  use_batch_norm=False, dropout=False, p_dropout=0.5, upscale=False):
    """
    add a convolutional module (convolutional layer + (leaky) ReLU + MaxPool) to the network  
    """

    if W_init is None:
        W = GlorotUniform(gain=(2/(1+0.01**2)) ** 0.5)  # gain adjusted for leaky ReLU with alpha=0.01
    else:
        W = W_init

    if bias is True:
        b = Constant(0.)
    else:
        b = None

    # build module
    if dropout:
        nnet.addDropoutLayer(p=p_dropout)

    nnet.addConvLayer(use_batch_norm=use_batch_norm,
                      num_filters=num_filters,
                      filter_size=filter_size,
                      pad=pad,
                      W=W,
                      b=b)

    if Cfg.leaky_relu:
        nnet.addLeakyReLU()
    else:
        nnet.addReLU()

    if upscale:
        nnet.addUpscale(scale_factor=pool_size)
    else:
        nnet.addMaxPool(pool_size=pool_size) 
開發者ID:lukasruff,項目名稱:Deep-SVDD,代碼行數:38,代碼來源:modules.py

示例13: __create_toplogy__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import GlorotUniform [as 別名]
def __create_toplogy__(self, input_var_first=None, input_var_second=None):
        # define network topology
        if (self.conf.rep % 2 != 0):
            raise ValueError("Representation size should be divisible by two as it's formed by combining two crossmodal translations", self.conf.rep)

        # input layers
        l_in_first  = InputLayer(shape=(self.conf.batch_size, self.conf.mod1size), input_var=input_var_first)
        l_in_second = InputLayer(shape=(self.conf.batch_size, self.conf.mod2size), input_var=input_var_second)

        # first -> second
        l_hidden1_first   = DenseLayer(l_in_first, num_units=self.conf.hdn, nonlinearity=self.conf.act, W=GlorotUniform())         # enc1
        l_hidden2_first   = DenseLayer(l_hidden1_first, num_units=self.conf.rep//2, nonlinearity=self.conf.act, W=GlorotUniform()) # enc2
        l_hidden2_first_d = DropoutLayer(l_hidden2_first, p=self.conf.dropout)
        l_hidden3_first   = DenseLayer(l_hidden2_first_d, num_units=self.conf.hdn, nonlinearity=self.conf.act, W=GlorotUniform())    # dec1
        l_out_first       = DenseLayer(l_hidden3_first, num_units=self.conf.mod2size, nonlinearity=self.conf.act, W=GlorotUniform()) # dec2

        if self.conf.untied:
            # FREE
            l_hidden1_second   = DenseLayer(l_in_second, num_units=self.conf.hdn, nonlinearity=self.conf.act, W=GlorotUniform())         # enc1
            l_hidden2_second   = DenseLayer(l_hidden1_second, num_units=self.conf.rep//2, nonlinearity=self.conf.act, W=GlorotUniform()) # enc2
            l_hidden2_second_d = DropoutLayer(l_hidden2_second, p=self.conf.dropout)
            l_hidden3_second   = DenseLayer(l_hidden2_second_d, num_units=self.conf.hdn, nonlinearity=self.conf.act, W=GlorotUniform())    # dec1
            l_out_second       = DenseLayer(l_hidden3_second, num_units=self.conf.mod1size, nonlinearity=self.conf.act, W=GlorotUniform()) # dec2
        else:
            # TIED middle
            l_hidden1_second   = DenseLayer(l_in_second, num_units=self.conf.hdn, nonlinearity=self.conf.act, W=GlorotUniform())             # enc1
            l_hidden2_second   = DenseLayer(l_hidden1_second, num_units=self.conf.rep//2, nonlinearity=self.conf.act, W=l_hidden3_first.W.T) # enc2
            l_hidden2_second_d = DropoutLayer(l_hidden2_second, p=self.conf.dropout)
            l_hidden3_second   = DenseLayer(l_hidden2_second_d, num_units=self.conf.hdn, nonlinearity=self.conf.act, W=l_hidden2_first.W.T) # dec1
            l_out_second       = DenseLayer(l_hidden3_second, num_units=self.conf.mod1size, nonlinearity=self.conf.act, W=GlorotUniform())  # dec2

        l_out = concat([l_out_first, l_out_second])

        return l_out, l_hidden2_first, l_hidden2_second 
開發者ID:v-v,項目名稱:BiDNN,代碼行數:36,代碼來源:bidnn.py

示例14: addDANStage

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import GlorotUniform [as 別名]
def addDANStage(self, stageIdx, net):
        prevStage = 's' + str(stageIdx - 1)
        curStage = 's' + str(stageIdx)

        #CONNNECTION LAYERS OF PREVIOUS STAGE
        net[prevStage + '_transform_params'] = TransformParamsLayer(net[prevStage + '_landmarks'], self.initLandmarks)
        net[prevStage + '_img_output'] = AffineTransformLayer(net['input'], net[prevStage + '_transform_params'])    
            
        net[prevStage + '_landmarks_affine'] = LandmarkTransformLayer(net[prevStage + '_landmarks'], net[prevStage + '_transform_params'])
        net[prevStage + '_img_landmarks'] = LandmarkImageLayer(net[prevStage + '_landmarks_affine'], (self.imageHeight, self.imageWidth), self.landmarkPatchSize)

        net[prevStage + '_img_feature'] = lasagne.layers.DenseLayer(net[prevStage + '_fc1'], num_units=56 * 56, W=GlorotUniform('relu'))
        net[prevStage + '_img_feature'] = lasagne.layers.ReshapeLayer(net[prevStage + '_img_feature'], (-1, 1, 56, 56))
        net[prevStage + '_img_feature'] = lasagne.layers.Upscale2DLayer(net[prevStage + '_img_feature'], 2)

        #CURRENT STAGE
        net[curStage + '_input'] = batch_norm(lasagne.layers.ConcatLayer([net[prevStage + '_img_output'], net[prevStage + '_img_landmarks'], net[prevStage + '_img_feature']], 1))

        net[curStage + '_conv1_1'] = batch_norm(Conv2DLayer(net[curStage + '_input'], 64, 3, pad='same', W=GlorotUniform('relu')))
        net[curStage + '_conv1_2'] = batch_norm(Conv2DLayer(net[curStage + '_conv1_1'], 64, 3, pad='same', W=GlorotUniform('relu')))
        net[curStage + '_pool1'] = lasagne.layers.Pool2DLayer(net[curStage + '_conv1_2'], 2)

        net[curStage + '_conv2_1'] = batch_norm(Conv2DLayer(net[curStage + '_pool1'], 128, 3, pad=1, W=GlorotUniform('relu')))
        net[curStage + '_conv2_2'] = batch_norm(Conv2DLayer(net[curStage + '_conv2_1'], 128, 3, pad=1, W=GlorotUniform('relu')))
        net[curStage + '_pool2'] = lasagne.layers.Pool2DLayer(net[curStage + '_conv2_2'], 2)

        net[curStage + '_conv3_1'] = batch_norm (Conv2DLayer(net[curStage + '_pool2'], 256, 3, pad=1, W=GlorotUniform('relu')))
        net[curStage + '_conv3_2'] = batch_norm (Conv2DLayer(net[curStage + '_conv3_1'], 256, 3, pad=1, W=GlorotUniform('relu')))  
        net[curStage + '_pool3'] = lasagne.layers.Pool2DLayer(net[curStage + '_conv3_2'], 2)
        
        net[curStage + '_conv4_1'] = batch_norm(Conv2DLayer(net[curStage + '_pool3'], 512, 3, pad=1, W=GlorotUniform('relu')))
        net[curStage + '_conv4_2'] = batch_norm (Conv2DLayer(net[curStage + '_conv4_1'], 512, 3, pad=1, W=GlorotUniform('relu')))  
        net[curStage + '_pool4'] = lasagne.layers.Pool2DLayer(net[curStage + '_conv4_2'], 2)
        
        net[curStage + '_pool4'] = lasagne.layers.FlattenLayer(net[curStage + '_pool4'])           
        net[curStage + '_fc1_dropout'] = lasagne.layers.DropoutLayer(net[curStage + '_pool4'], p=0.5)
       
        net[curStage + '_fc1'] = batch_norm(lasagne.layers.DenseLayer(net[curStage + '_fc1_dropout'], num_units=256, W=GlorotUniform('relu')))

        net[curStage + '_output'] = lasagne.layers.DenseLayer(net[curStage + '_fc1'], num_units=136, nonlinearity=None)
        net[curStage + '_landmarks'] = lasagne.layers.ElemwiseSumLayer([net[prevStage + '_landmarks_affine'], net[curStage + '_output']])

        net[curStage + '_landmarks'] = LandmarkTransformLayer(net[curStage + '_landmarks'], net[prevStage + '_transform_params'], True) 
開發者ID:MarekKowalski,項目名稱:DeepAlignmentNetwork,代碼行數:45,代碼來源:FaceAlignmentTraining.py

示例15: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import GlorotUniform [as 別名]
def __init__(self, incoming, num_filters, filter_size, stride=(1, 1),
                 pad=0, untie_biases=False, W=init.GlorotUniform(),
                 b=init.Constant(0.), nonlinearity=nonlinearities.rectify,
                 flip_filters=True, convolution=theano.tensor.nnet.conv2d,
                 centered=True, **kwargs):
        """A padded convolutional layer

        Note
        ----
        If used in place of a :class:``lasagne.layers.Conv2DLayer`` be
        sure to specify `flag_filters=False`, which is the default for
        that layer

        Parameters
        ----------
        incoming : lasagne.layers.Layer
            The input layer
        num_filters : int
            The number of filters or kernels of the convolution
        filter_size : int or iterable of int
            The size of the filters
        stride : int or iterable of int
            The stride or subsampling of the convolution
        pad :  int, iterable of int, ``full``, ``same`` or ``valid``
            **Ignored!** Kept for compatibility with the
            :class:``lasagne.layers.Conv2DLayer``
        untie_biases : bool
            See :class:``lasagne.layers.Conv2DLayer``
        W : Theano shared variable, expression, numpy array or callable
            See :class:``lasagne.layers.Conv2DLayer``
        b : Theano shared variable, expression, numpy array, callable or None
            See :class:``lasagne.layers.Conv2DLayer``
        nonlinearity : callable or None
            See :class:``lasagne.layers.Conv2DLayer``
        flip_filters : bool
            See :class:``lasagne.layers.Conv2DLayer``
        convolution : callable
            See :class:``lasagne.layers.Conv2DLayer``
        centered : bool
            If True, the padding will be added on both sides. If False
            the zero padding will be applied on the upper left side.
        **kwargs
            Any additional keyword arguments are passed to the
            :class:``lasagne.layers.Layer`` superclass
        """
        self.centered = centered
        if pad not in [0, (0, 0), [0, 0]]:
            warnings.warn('The specified padding will be ignored',
                          RuntimeWarning)
        super(PaddedConv2DLayer, self).__init__(incoming, num_filters,
                                                filter_size, stride, pad,
                                                untie_biases, W, b,
                                                nonlinearity, flip_filters,
                                                **kwargs)
        if self.input_shape[2:] != (None, None):
            warnings.warn('This Layer should only be used when the size of '
                          'the image is not known', RuntimeWarning) 
開發者ID:fvisin,項目名稱:reseg,代碼行數:59,代碼來源:padded.py


注:本文中的lasagne.init.GlorotUniform方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。