當前位置: 首頁>>代碼示例>>Python>>正文


Python init.Constant方法代碼示例

本文整理匯總了Python中lasagne.init.Constant方法的典型用法代碼示例。如果您正苦於以下問題:Python init.Constant方法的具體用法?Python init.Constant怎麽用?Python init.Constant使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在lasagne.init的用法示例。


在下文中一共展示了init.Constant方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import Constant [as 別名]
def __init__(self, incoming, num_styles=None, epsilon=1e-4,
				 beta=Constant(0), gamma=Constant(1), **kwargs):
		super(InstanceNormLayer, self).__init__(incoming, **kwargs)

		self.axes = (2, 3)
		self.epsilon = epsilon

		if num_styles == None:
			shape = (self.input_shape[1],)
		else:
			shape = (num_styles, self.input_shape[1])

		if beta is None:
			self.beta = None
		else:
			self.beta = self.add_param(beta, shape, 'beta',
									   trainable=True, regularizable=False)
		if gamma is None:
			self.gamma = None
		else:
			self.gamma = self.add_param(gamma, shape, 'gamma',
										trainable=True, regularizable=True) 
開發者ID:joelmoniz,項目名稱:gogh-figure,代碼行數:24,代碼來源:layers.py

示例2: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import Constant [as 別名]
def __init__(self, incoming, num_filters, filter_size, stride=(1, 1),
                 pad=0, untie_biases=False, groups=1,
                 W=init.Uniform(), b=init.Constant(0.),
                 nonlinearity=nl.rectify, flip_filters=True,
                 convolution=T.nnet.conv2d, filter_dilation=(1, 1), **kwargs):
        assert num_filters % groups == 0
        self.groups = groups
        super(GroupConv2DLayer, self).__init__(incoming, num_filters, filter_size,
                                               stride=stride, pad=pad,
                                               untie_biases=untie_biases,
                                               W=W, b=b,
                                               nonlinearity=nonlinearity,
                                               flip_filters=flip_filters,
                                               convolution=convolution,
                                               filter_dilation=filter_dilation,
                                               **kwargs) 
開發者ID:alexlee-gk,項目名稱:visual_dynamics,代碼行數:18,代碼來源:layers_theano.py

示例3: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import Constant [as 別名]
def __init__(self, incoming, num_labels, mask_input=None, W=init.GlorotUniform(), b=init.Constant(0.), **kwargs):
        # This layer inherits from a MergeLayer, because it can have two
        # inputs - the layer input, and the mask.
        # We will just provide the layer input as incomings, unless a mask input was provided.

        self.input_shape = incoming.output_shape
        incomings = [incoming]
        self.mask_incoming_index = -1
        if mask_input is not None:
            incomings.append(mask_input)
            self.mask_incoming_index = 1

        super(CRFLayer, self).__init__(incomings, **kwargs)
        self.num_labels = num_labels + 1
        self.pad_label_index = num_labels

        num_inputs = self.input_shape[2]
        self.W = self.add_param(W, (num_inputs, self.num_labels, self.num_labels), name="W")

        if b is None:
            self.b = None
        else:
            self.b = self.add_param(b, (self.num_labels, self.num_labels), name="b", regularizable=False) 
開發者ID:XuezheMax,項目名稱:LasagneNLP,代碼行數:25,代碼來源:crf.py

示例4: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import Constant [as 別名]
def __init__(self, incoming_vertex, incoming_edge, num_filters, filter_size, W=init.GlorotUniform(),
                 b=init.Constant(0.), nonlinearity=nonlinearities.rectify, **kwargs):
        self.vertex_shape = incoming_vertex.output_shape
        self.edge_shape = incoming_edge.output_shape

        self.input_shape = incoming_vertex.output_shape
        incomings = [incoming_vertex, incoming_edge]
        self.vertex_incoming_index = 0
        self.edge_incoming_index = 1
        super(GraphConvLayer, self).__init__(incomings, **kwargs)
        if nonlinearity is None:
            self.nonlinearity = nonlinearities.identity
        else:
            self.nonlinearity = nonlinearity

        self.num_filters = num_filters
        self.filter_size = filter_size

        self.W = self.add_param(W, self.get_W_shape(), name="W")
        if b is None:
            self.b = None
        else:
            self.b = self.add_param(b, (num_filters,), name="b", regularizable=False) 
開發者ID:XuezheMax,項目名稱:LasagneNLP,代碼行數:25,代碼來源:graph.py

示例5: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import Constant [as 別名]
def __init__(self, incoming, W_h=init.GlorotUniform(), b_h=init.Constant(0.), W_t=init.GlorotUniform(),
                 b_t=init.Constant(0.), nonlinearity=nonlinearities.rectify, **kwargs):
        super(HighwayDenseLayer, self).__init__(incoming, **kwargs)
        self.nonlinearity = (nonlinearities.identity if nonlinearity is None
                             else nonlinearity)

        num_inputs = int(np.prod(self.input_shape[1:]))

        self.W_h = self.add_param(W_h, (num_inputs, num_inputs), name="W_h")
        if b_h is None:
            self.b_h = None
        else:
            self.b_h = self.add_param(b_h, (num_inputs,), name="b_h", regularizable=False)

        self.W_t = self.add_param(W_t, (num_inputs, num_inputs), name="W_t")
        if b_t is None:
            self.b_t = None
        else:
            self.b_t = self.add_param(b_t, (num_inputs,), name="b_t", regularizable=False) 
開發者ID:XuezheMax,項目名稱:LasagneNLP,代碼行數:21,代碼來源:highway.py

示例6: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import Constant [as 別名]
def __init__(self, incoming, num_labels, mask_input=None, W_h=init.GlorotUniform(), W_c=init.GlorotUniform(),
                 b=init.Constant(0.), **kwargs):
        # This layer inherits from a MergeLayer, because it can have two
        # inputs - the layer input, and the mask.
        # We will just provide the layer input as incomings, unless a mask input was provided.
        self.input_shape = incoming.output_shape
        incomings = [incoming]
        self.mask_incoming_index = -1
        if mask_input is not None:
            incomings.append(mask_input)
            self.mask_incoming_index = 1

        super(DepParserLayer, self).__init__(incomings, **kwargs)
        self.num_labels = num_labels
        num_inputs = self.input_shape[2]

        # add parameters
        self.W_h = self.add_param(W_h, (num_inputs, self.num_labels), name='W_h')

        self.W_c = self.add_param(W_c, (num_inputs, self.num_labels), name='W_c')

        if b is None:
            self.b = None
        else:
            self.b = self.add_param(b, (self.num_labels,), name='b', regularizable=False) 
開發者ID:XuezheMax,項目名稱:LasagneNLP,代碼行數:27,代碼來源:parser.py

示例7: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import Constant [as 別名]
def __init__(self, incoming, num_units, W=init.GlorotUniform(),
                 b=init.Constant(0.), nonlinearity=nonlinearities.rectify,
                 num_leading_axes=1, p=0.5, shared_axes=(), noise_samples=None,
                 **kwargs):
        super(DenseDropoutLayer, self).__init__(
            incoming, num_units, W, b, nonlinearity,
            num_leading_axes, **kwargs)

        self.p = p
        self.shared_axes = shared_axes

        # init randon number generator
        self._srng = RandomStreams(get_rng().randint(1, 2147462579))

        # initialize noise samples
        self.noise = self.init_noise(noise_samples) 
開發者ID:mcgillmrl,項目名稱:kusanagi,代碼行數:18,代碼來源:layers.py

示例8: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import Constant [as 別名]
def __init__(self, incomings, nfilters, nrings=5, nrays=16,
                 W=LI.GlorotNormal(), b=LI.Constant(0.0),
                 normalize_rings=False, normalize_input=False, take_max=True, 
                 nonlinearity=LN.rectify, **kwargs):
        super(GCNNLayer, self).__init__(incomings, **kwargs)
        
        # patch operator sizes
        self.nfilters = nfilters
        self.nrings = nrings
        self.nrays = nrays
        self.filter_shape = (nfilters, self.input_shapes[0][1], nrings, nrays)
        self.biases_shape = (nfilters, )
        # path operator parameters
        self.normalize_rings = normalize_rings
        self.normalize_input = normalize_input
        self.take_max = take_max
        self.nonlinearity = nonlinearity
        
        # layer parameters:
        # y = Wx + b, where x are the input features and y are the output features
        self.W = self.add_param(W, self.filter_shape, name="W")
        self.b = self.add_param(b, self.biases_shape, name="b", regularizable=False) 
開發者ID:davideboscaini,項目名稱:acnn,代碼行數:24,代碼來源:custom_layers.py

示例9: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import Constant [as 別名]
def __init__(self, incoming, num_centers,
                 locs=init.Normal(std=1), log_sigma=init.Constant(0.),
                 **kwargs):
        super(RBFLayer, self).__init__(incoming, **kwargs)
        self.num_centers = num_centers

        assert len(self.input_shape) == 2
        in_dim = self.input_shape[1]
        self.locs = self.add_param(locs, (num_centers, in_dim), name='locs',
                                   regularizable=False)
        self.log_sigma = self.add_param(log_sigma, (), name='log_sigma') 
開發者ID:djsutherland,項目名稱:opt-mmd,代碼行數:13,代碼來源:layers.py

示例10: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import Constant [as 別名]
def __init__(self, args, incoming, num_units, W=init.GlorotUniform(),
                 b=init.Constant(0.), nonlinearity=nonlinearities.rectify,
                 num_leading_axes=1, **kwargs):
        super(DenseLayerWithReg, self).__init__(incoming, **kwargs)
        self.nonlinearity = (nonlinearities.identity if nonlinearity is None
                             else nonlinearity)

        self.num_units = num_units

        if num_leading_axes >= len(self.input_shape):
            raise ValueError(
                    "Got num_leading_axes=%d for a %d-dimensional input, "
                    "leaving no trailing axes for the dot product." %
                    (num_leading_axes, len(self.input_shape)))
        elif num_leading_axes < -len(self.input_shape):
            raise ValueError(
                    "Got num_leading_axes=%d for a %d-dimensional input, "
                    "requesting more trailing axes than there are input "
                    "dimensions." % (num_leading_axes, len(self.input_shape)))
        self.num_leading_axes = num_leading_axes

        if any(s is None for s in self.input_shape[num_leading_axes:]):
            raise ValueError(
                    "A DenseLayer requires a fixed input shape (except for "
                    "the leading axes). Got %r for num_leading_axes=%d." %
                    (self.input_shape, self.num_leading_axes))
        num_inputs = int(np.prod(self.input_shape[num_leading_axes:]))

        self.W = self.add_param(W, (num_inputs, num_units), name="W")
        if b is None:
            self.b = None
        else:
            self.b = self.add_param(b, (num_units,), name="b",
                                    regularizable=False)

        if args.regL1 is True:
            self.L1 = self.add_param(init.Constant(args.regInit['L1']),
                                     (num_inputs, num_units), name="L1")
        if args.regL2 is True:
            self.L2 = self.add_param(init.Constant(args.regInit['L2']),
                                     (num_inputs, num_units), name="L2") 
開發者ID:bigaidream-projects,項目名稱:drmad,代碼行數:43,代碼來源:layers.py

示例11: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import Constant [as 別名]
def __init__(self, incoming, filter_size,
                 init_std=5., W_logstd=None,
                 stride=1, pad=0,
                 nonlinearity=None,
                 convolution=conv1d_mc0, **kwargs):
        super(GaussianScan1DLayer, self).__init__(incoming, **kwargs)
        # convolution = conv1d_gpucorrmm_mc0
        # convolution = conv.conv1d_mc0
        # convolution = T.nnet.conv2d
        if nonlinearity is None:
            self.nonlinearity = nonlinearities.identity
        else:
            self.nonlinearity = nonlinearity

        self.filter_size = as_tuple(filter_size, 1)
        self.stride = as_tuple(stride, 1)
        self.convolution = convolution

        # if self.filter_size[0] % 2 == 0:
        #     raise NotImplementedError(
        #         'GaussianConv1dLayer requires odd filter size.')

        if pad == 'valid':
            self.pad = (0,)
        elif pad in ('full', 'same', 'strictsame'):
            self.pad = pad
        else:
            self.pad = as_tuple(pad, 1, int)

        if W_logstd is None:
            init_std = np.asarray(init_std, dtype=floatX)
            W_logstd = init.Constant(np.log(init_std))
        # print(W_std)
        # W_std = init.Constant(init_std),
        self.num_input_channels = self.input_shape[1]
        # self.num_filters = self.num_input_channels
        self.W_logstd = self.add_param(W_logstd,
                                       (self.num_input_channels,),
                                       name="W_logstd",
                                       regularizable=False)
        self.W = self.make_gaussian_filter() 
開發者ID:ciaua,項目名稱:clip2frame,代碼行數:43,代碼來源:layers.py

示例12: __init__

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import Constant [as 別名]
def __init__(self, incoming, axes='auto', epsilon=1e-4, alpha=0.1,
                 beta=init.Constant(-3.0),
                 mean=init.Constant(0), inv_std=init.Constant(1), **kwargs):
        super(BatchNormSparseLayer, self).__init__(incoming, **kwargs)

        if axes == 'auto':
            # default: normalize over all but the second axis
            axes = (0,) + tuple(range(2, len(self.input_shape)))
        elif isinstance(axes, int):
            axes = (axes,)
        self.axes = axes

        self.epsilon = epsilon
        self.alpha = alpha

        # create parameters, ignoring all dimensions in axes
        shape = [size for axis, size in enumerate(self.input_shape)
                 if axis not in self.axes]
        if any(size is None for size in shape):
            raise ValueError("BatchNormSparseLayer needs specified input sizes for "
                             "all axes not normalized over.")
        self.beta = self.add_param(beta, shape, 'beta',
                                    trainable=False, regularizable=False)
        self.mean = self.add_param(mean, shape, 'mean',
                                    trainable=False, regularizable=False)
        self.inv_std = self.add_param(inv_std, shape, 'inv_std',
                                    trainable=False, regularizable=False) 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:29,代碼來源:batch_norms.py

示例13: batch_nmsp

# 需要導入模塊: from lasagne import init [as 別名]
# 或者: from lasagne.init import Constant [as 別名]
def batch_nmsp(layer, beta=init.Constant(-3.0), **kwargs):
    nonlinearity = getattr(layer, 'nonlinearity', None)
    if nonlinearity is not None:
        layer.nonlinearity = nonlinearities.identity
    if hasattr(layer, 'b') and layer.b is not None:
        del layer.params[layer.b]
        layer.b = None
    layer = BatchNormSparseLayer(layer, beta=beta, **kwargs)
    if nonlinearity is not None:
        from lasagne.layers import NonlinearityLayer
        layer = NonlinearityLayer(layer, nonlinearity)
    return layer 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:14,代碼來源:batch_norms.py


注:本文中的lasagne.init.Constant方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。