當前位置: 首頁>>代碼示例>>Python>>正文


Python lanms.merge_quadrangle_n9方法代碼示例

本文整理匯總了Python中lanms.merge_quadrangle_n9方法的典型用法代碼示例。如果您正苦於以下問題:Python lanms.merge_quadrangle_n9方法的具體用法?Python lanms.merge_quadrangle_n9怎麽用?Python lanms.merge_quadrangle_n9使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在lanms的用法示例。


在下文中一共展示了lanms.merge_quadrangle_n9方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: detect_single_scale

# 需要導入模塊: import lanms [as 別名]
# 或者: from lanms import merge_quadrangle_n9 [as 別名]
def detect_single_scale(score_map, geo_map, score_map_thresh, nms_thres, box_thresh, timer):
    if len(score_map.shape) == 4:
        score_map = score_map[0, :, :, 0]
        geo_map = geo_map[0, :, :, ]
    # filter the score map
    xy_text = np.argwhere(score_map > score_map_thresh)
    # sort the text boxes via the y axis
    xy_text = xy_text[np.argsort(xy_text[:, 0])]
    # restore
    start = time.time()
    # xy_text[:, ::-1]*4 滿足條件的pixel的坐標
    # geo_map[xy_text[:, 0], xy_text[:, 1], :] 得到對應點到bounding box 的距離
    text_box_restored = restore_rectangle(xy_text[:, ::-1], geo_map[xy_text[:, 0], xy_text[:, 1], :])  # N*4*2
    print('{} text boxes before nms'.format(text_box_restored.shape[0]))
    boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
    boxes[:, :8] = text_box_restored.reshape((-1, 8))
    boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
    timer['restore'] = time.time() - start
    # nms part
    start = time.time()
    # boxes = nms_locality.nms_locality(boxes.astype(np.float64), nms_thres)
    boxes = lanms.merge_quadrangle_n9(boxes.astype('float32'), nms_thres)
    timer['nms'] = time.time() - start

    if boxes.shape[0] == 0:
        return None, timer

    # here we filter some low score boxes by the average score map, this is different from the orginal paper
    for i, box in enumerate(boxes):
        mask = np.zeros_like(score_map, dtype=np.uint8)
        cv2.fillPoly(mask, box[:8].reshape((-1, 4, 2)).astype(np.int32), 1)
        boxes[i, 8] = cv2.mean(score_map, mask)[0]
    boxes = boxes[boxes[:, 8] > box_thresh]
    return boxes 
開發者ID:UpCoder,項目名稱:ICPR_TextDection,代碼行數:36,代碼來源:test_multiscale.py

示例2: detect

# 需要導入模塊: import lanms [as 別名]
# 或者: from lanms import merge_quadrangle_n9 [as 別名]
def detect(score_maps, geo_maps, timer, score_map_thresh=0.8, box_thresh=0.1, nms_thres=0.2, ratio_ws=None, ratio_hs=None):
    '''
    restore text boxes from score map and geo map
    :param score_map:
    :param geo_map:[W,H,5]
    :param timer:
    :param score_map_thresh: threshhold for score map
    :param box_thresh: threshhold for boxes
    :param nms_thres: threshold for nms
    :return:
    '''
    if len(score_maps) != len(geo_maps) and len(geo_maps) != len(ratio_hs) and len(ratio_hs) != len(ratio_ws):
        print 'the number of different scales is not equal'
        assert False
    boxes = []
    for scale_idx in range(len(score_maps)):
        cur_score_map = score_maps[scale_idx]
        cur_geo_map = geo_maps[scale_idx]
        cur_ratio_w = ratio_ws[scale_idx]
        cur_ratio_h = ratio_hs[scale_idx]
        cur_boxes = detect_single_scale(cur_score_map, cur_geo_map, score_map_thresh, nms_thres, box_thresh, timer)
        cur_boxes_points = cur_boxes[:, :8].reshape((-1, 4, 2))
        cur_boxes_points[:, :, 0] /= cur_ratio_w
        cur_boxes_points[:, :, 1] /= cur_ratio_h
        cur_boxes = np.concatenate([np.reshape(cur_boxes_points, (-1, 8)), np.expand_dims(cur_boxes[:, 8], axis=1)], axis=1)
        boxes.extend(cur_boxes)
    boxes = np.array(boxes)
    boxes = lanms.merge_quadrangle_n9(boxes.astype('float32'), nms_thres)
    print('{} text boxes after final nms'.format(boxes.shape[0]))
    boxes = boxes[:, :8].reshape((-1, 4, 2))
    return boxes, timer 
開發者ID:UpCoder,項目名稱:ICPR_TextDection,代碼行數:33,代碼來源:test_multiscale.py

示例3: detect

# 需要導入模塊: import lanms [as 別名]
# 或者: from lanms import merge_quadrangle_n9 [as 別名]
def detect(self, score_map, geo_map, score_map_thresh=0.8, box_thresh=0.1, nms_thres=0.2):                                                
    '''                                                                                                                                    
    restore text boxes from score map and geo map                                                                                          
    :param score_map:                                                                                                                      
    :param geo_map:                                                                                                                    
    :param score_map_thresh: threshhold for score map                                                                                      
    :param box_thresh: threshhold for boxes                                                                                                
    :param nms_thres: threshold for nms                                                                                                    
    :return:                                                                                                                               
    '''
    if len(score_map.shape) == 4:                                                                                                          
      score_map = score_map[0, :, :, 0]                                                                                                  
      geo_map = geo_map[0, :, :, ]                                                                                                       
    # filter the score map                                                                                                                 
    xy_text = np.argwhere(score_map > score_map_thresh)                                                                                    
    # sort the text boxes via the y axis                                                                                                   
    xy_text = xy_text[np.argsort(xy_text[:, 0])]                                                                                           
    # restore                                                                                                                              

    text_box_restored = restore_rectangle(xy_text[:, ::-1]*4, geo_map[xy_text[:, 0], xy_text[:, 1], :]) # N*4*2                            
    print('{} text boxes before nms'.format(text_box_restored.shape[0]))                                                                   
    boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)                                                                    
    boxes[:, :8] = text_box_restored.reshape((-1, 8))                                                                                      
    boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]                                                                                  
    # boxes = nms_locality.nms_locality(boxes.astype(np.float64), nms_thres)                                                               
    boxes = lanms.merge_quadrangle_n9(boxes.astype('float32'), nms_thres)                                                                                                                                                                   
                                                                                                                                           
    if boxes.shape[0] == 0:                                                                                                                
      return None                                                                                                               
                                                                                                                                           
    # here we filter some low score boxes by the average score map, this is different from the orginal paper                               
    for i, box in enumerate(boxes):                                                                                                        
      mask = np.zeros_like(score_map, dtype=np.uint8)                                                                                    
      cv2.fillPoly(mask, box[:8].reshape((-1, 4, 2)).astype(np.int32) // 4, 1)                                                           
      boxes[i, 8] = cv2.mean(score_map, mask)[0]                                                                                         
    boxes = boxes[boxes[:, 8] > box_thresh]                                                                                                
                                                                                                                                           
    return boxes 
開發者ID:ucloud,項目名稱:uai-sdk,代碼行數:40,代碼來源:east_inference.py

示例4: detect

# 需要導入模塊: import lanms [as 別名]
# 或者: from lanms import merge_quadrangle_n9 [as 別名]
def detect(score_map, geo_map, score_map_thresh=0.8, box_thresh=0.1, nms_thres=0.2):                                                
    '''                                                                                                                                    
    restore text boxes from score map and geo map
    :param score_map: 
    :param geo_map:
    :param score_map_thresh: threshhold for score map
    :param box_thresh: threshhold for boxes
    :param nms_thres: threshold for nms
    :return:
    '''

    if len(score_map.shape) == 4:
        score_map = score_map[0, :, :, 0]
        geo_map = geo_map[0, :, :, ]

    # filter the score map
    xy_text = np.argwhere(score_map > score_map_thresh)
    # sort the text boxes via the y axis                                                                                                   
    xy_text = xy_text[np.argsort(xy_text[:, 0])]
    # restore                                                                                                                              

    text_box_restored = restore_rectangle(xy_text[:, ::-1]*4, geo_map[xy_text[:, 0], xy_text[:, 1], :]) # N*4*2
    print('{} text boxes before nms'.format(text_box_restored.shape[0]))
    boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
    boxes[:, :8] = text_box_restored.reshape((-1, 8))
    boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
    # boxes = nms_locality.nms_locality(boxes.astype(np.float64), nms_thres)
    boxes = lanms.merge_quadrangle_n9(boxes.astype('float32'), nms_thres)

    if boxes.shape[0] == 0:
        return None

    # here we filter some low score boxes by the average score map, this is different from the orginal paper                               
    for i, box in enumerate(boxes):
        mask = np.zeros_like(score_map, dtype=np.uint8)
        cv2.fillPoly(mask, box[:8].reshape((-1, 4, 2)).astype(np.int32) // 4, 1)
        boxes[i, 8] = cv2.mean(score_map, mask)[0]
    boxes = boxes[boxes[:, 8] > box_thresh]

    return boxes 
開發者ID:ucloud,項目名稱:uai-sdk,代碼行數:42,代碼來源:east_multi_infer.py

示例5: get_boxes

# 需要導入模塊: import lanms [as 別名]
# 或者: from lanms import merge_quadrangle_n9 [as 別名]
def get_boxes(score, geo, score_thresh=0.9, nms_thresh=0.2):
	'''get boxes from feature map
	Input:
		score       : score map from model <numpy.ndarray, (1,row,col)>
		geo         : geo map from model <numpy.ndarray, (5,row,col)>
		score_thresh: threshold to segment score map
		nms_thresh  : threshold in nms
	Output:
		boxes       : final polys <numpy.ndarray, (n,9)>
	'''
	score = score[0,:,:]
	xy_text = np.argwhere(score > score_thresh) # n x 2, format is [r, c]
	if xy_text.size == 0:
		return None

	xy_text = xy_text[np.argsort(xy_text[:, 0])]
	valid_pos = xy_text[:, ::-1].copy() # n x 2, [x, y]
	valid_geo = geo[:, xy_text[:, 0], xy_text[:, 1]] # 5 x n
	polys_restored, index = restore_polys(valid_pos, valid_geo, score.shape) 
	if polys_restored.size == 0:
		return None

	boxes = np.zeros((polys_restored.shape[0], 9), dtype=np.float32)
	boxes[:, :8] = polys_restored
	boxes[:, 8] = score[xy_text[index, 0], xy_text[index, 1]]
	boxes = lanms.merge_quadrangle_n9(boxes.astype('float32'), nms_thresh)
	return boxes 
開發者ID:SakuraRiven,項目名稱:EAST,代碼行數:29,代碼來源:detect.py

示例6: detect

# 需要導入模塊: import lanms [as 別名]
# 或者: from lanms import merge_quadrangle_n9 [as 別名]
def detect(score_map, geo_map, timer, score_map_thresh=1e-5, box_thresh=1e-8, nms_thres=0.1):
    '''
    restore text boxes from score map and geo map
    :param score_map:
    :param geo_map:
    :param timer:
    :param score_map_thresh: threshhold for score map
    :param box_thresh: threshhold for boxes
    :param nms_thres: threshold for nms
    :return:
    '''
    if len(score_map.shape) == 4:
        score_map = score_map[0, :, :, 0]
        geo_map = geo_map[0, :, :, ]
    # filter the score map
    xy_text = np.argwhere(score_map > score_map_thresh)
    # sort the text boxes via the y axis
    xy_text = xy_text[np.argsort(xy_text[:, 0])]
    # restore
    start = time.time()
    text_box_restored = restore_rectangle(xy_text[:, ::-1]*4, geo_map[xy_text[:, 0], xy_text[:, 1], :]) # N*4*2
    #print('{} text boxes before nms'.format(text_box_restored.shape[0]))
    boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
    boxes[:, :8] = text_box_restored.reshape((-1, 8))
    boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
    timer['restore'] = time.time() - start
    # nms part
    start = time.time()
    # boxes = nms_locality.nms_locality(boxes.astype(np.float64), nms_thres)
    boxes = lanms.merge_quadrangle_n9(boxes.astype('float32'), nms_thres)
    timer['nms'] = time.time() - start
    if boxes.shape[0] == 0:
        return None, timer

    # here we filter some low score boxes by the average score map, this is different from the orginal paper
    for i, box in enumerate(boxes):
        mask = np.zeros_like(score_map, dtype=np.uint8)
        cv2.fillPoly(mask, box[:8].reshape((-1, 4, 2)).astype(np.int32) // 4, 1)
        boxes[i, 8] = cv2.mean(score_map, mask)[0]
    boxes = boxes[boxes[:, 8] > box_thresh]
    return boxes, timer 
開發者ID:songdejia,項目名稱:EAST,代碼行數:43,代碼來源:eval.py

示例7: postprocess

# 需要導入模塊: import lanms [as 別名]
# 或者: from lanms import merge_quadrangle_n9 [as 別名]
def postprocess(score_map, geo_map, score_map_thresh=0.01, box_thresh=0.01, nms_thres=0.2):
    """     Removal of boxes according to various thresholds
    Args:
            *   score_map: confidence score of boxes
            *   geo_map: coordinates of boxes
            *   score_map_thresh: Threshold to filter according to score map
            *   box_thresh: Threshold to filter resultant boxes
            *   nms_thres: Threshold to filter according to Non-Maximum Suppression
    Workflow:
            *   sort the text boxes in accordance to the y axis
            *   restore_rectangle is called to handle tilted boxes
            *   Locality-Aware Non-Maximum Suppression (LANMS) is used to filter
                out overlapping boxes
            *   Average Score Map is used to filter out more boxes
            *   box_thresh is finally used to further filter out boxes
    Returns:
            *   Rezised Image along  with resizing factor
    """

    logger.info(msg="postprocess called")
    if len(score_map.shape) == 4:
        score_map = score_map[0, :, :, 0]
        geo_map = geo_map[0, :, :, ]
    xy_text = np.argwhere(score_map > score_map_thresh)
    xy_text = xy_text[np.argsort(xy_text[:, 0])]
    text_box_restored = restore_rectangle(xy_text[:, ::-1] * 4, geo_map[xy_text[:, 0], xy_text[:, 1], :])
    boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
    boxes[:, :8] = text_box_restored.reshape((-1, 8))
    boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]

    boxes = lanms.merge_quadrangle_n9(boxes.astype('float32'), nms_thres)

    if boxes.shape[0] == 0:
        return None

    for i, box in enumerate(boxes):
        mask = np.zeros_like(score_map, dtype=np.uint8)
        cv2.fillPoly(mask, box[:8].reshape((-1, 4, 2)).astype(np.int32) // 4, 1)
        boxes[i, 8] = cv2.mean(score_map, mask)[0]
    boxes = boxes[boxes[:, 8] > box_thresh]

    return boxes 
開發者ID:pymit,項目名稱:Rekognition,代碼行數:44,代碼來源:EAST_utils.py

示例8: detect_single_scale

# 需要導入模塊: import lanms [as 別名]
# 或者: from lanms import merge_quadrangle_n9 [as 別名]
def detect_single_scale(score_map, geo_map, score_map_thresh, nms_thres, box_thresh, timer):
    if len(score_map.shape) == 4:
        score_map = score_map[0, :, :, 0]
        geo_map = geo_map[0, :, :, ]
    # filter the score map
    xy_text = np.argwhere(score_map > score_map_thresh)
    # sort the text boxes via the y axis
    xy_text = xy_text[np.argsort(xy_text[:, 0])]
    # restore
    start = time.time()
    # xy_text[:, ::-1]*4 滿足條件的pixel的坐標
    # geo_map[xy_text[:, 0], xy_text[:, 1], :] 得到對應點到bounding box 的距離
    text_box_restored = restore_rectangle(xy_text[:, ::-1], geo_map[xy_text[:, 0], xy_text[:, 1], :])  # N*4*2
    print('{} text boxes before nms'.format(text_box_restored.shape[0]))
    boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
    boxes[:, :8] = text_box_restored.reshape((-1, 8))
    boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
    timer['restore'] = time.time() - start

    # Modify Start
    # 我們以bounding box內的平均值作為nms的標準而不是一個點的值
    # new_boxes = np.copy(boxes)
    # for i, box in enumerate(new_boxes):
    #     mask = np.zeros_like(score_map, dtype=np.uint8)
    #     cv2.fillPoly(mask, box[:8].reshape((-1, 4, 2)).astype(np.int32), 1)
    #     new_boxes[i, 8] = cv2.mean(score_map, mask)[0]
    # end


    # nms part
    start = time.time()
    # boxes = nms_locality.nms_locality(boxes.astype(np.float64), nms_thres)
    boxes = lanms.merge_quadrangle_n9(boxes.astype('float32'), nms_thres)
    # boxes = lanms.merge_quadrangle_n9(new_boxes.astype('float32'), nms_thres)

    timer['nms'] = time.time() - start

    if boxes.shape[0] == 0:
        return None, timer

    # here we filter some low score boxes by the average score map, this is different from the orginal paper
    for i, box in enumerate(boxes):
        mask = np.zeros_like(score_map, dtype=np.uint8)
        cv2.fillPoly(mask, box[:8].reshape((-1, 4, 2)).astype(np.int32), 1)
        boxes[i, 8] = cv2.mean(score_map, mask)[0]
    boxes = boxes[boxes[:, 8] > box_thresh]
    return boxes 
開發者ID:UpCoder,項目名稱:ICPR_TextDection,代碼行數:49,代碼來源:val_f1score_multiscale.py

示例9: detect

# 需要導入模塊: import lanms [as 別名]
# 或者: from lanms import merge_quadrangle_n9 [as 別名]
def detect(score_map, geo_map, timer, score_map_thresh=0.8, box_thresh=0.1, nms_thres=0.2):
    '''
    restore text boxes from score map and geo map
    :param score_map:
    :param geo_map:[W,H,5]
    :param timer:
    :param score_map_thresh: threshhold for score map
    :param box_thresh: threshhold for boxes
    :param nms_thres: threshold for nms
    :return:
    '''
    if len(score_map.shape) == 4:
        score_map = score_map[0, :, :, 0]
        geo_map = geo_map[0, :, :, ]
    # filter the score map
    xy_text = np.argwhere(score_map > score_map_thresh)
    # sort the text boxes via the y axis
    xy_text = xy_text[np.argsort(xy_text[:, 0])]
    # restore
    start = time.time()
    # xy_text[:, ::-1]*4 滿足條件的pixel的坐標
    # geo_map[xy_text[:, 0], xy_text[:, 1], :] 得到對應點到bounding box 的距離
    text_box_restored = restore_rectangle(xy_text[:, ::-1], geo_map[xy_text[:, 0], xy_text[:, 1], :]) # N*4*2
    print('{} text boxes before nms'.format(text_box_restored.shape[0]))
    boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
    boxes[:, :8] = text_box_restored.reshape((-1, 8))
    boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
    timer['restore'] = time.time() - start

    # Modify Start
    # 我們以bounding box內的平均值作為nms的標準而不是一個點的值
    new_boxes = np.copy(boxes)
    for i, box in enumerate(new_boxes):
        mask = np.zeros_like(score_map, dtype=np.uint8)
        cv2.fillPoly(mask, box[:8].reshape((-1, 4, 2)).astype(np.int32), 1)
        new_boxes[i, 8] = cv2.mean(score_map, mask)[0]
    # end

    # nms part
    start = time.time()
    # boxes = nms_locality.nms_locality(boxes.astype(np.float64), nms_thres)
    # boxes = lanms.merge_quadrangle_n9(boxes.astype('float32'), nms_thres)
    boxes = lanms.merge_quadrangle_n9(new_boxes.astype('float32'), nms_thres)
    timer['nms'] = time.time() - start

    if boxes.shape[0] == 0:
        return None, timer

    # here we filter some low score boxes by the average score map, this is different from the orginal paper
    for i, box in enumerate(boxes):
        mask = np.zeros_like(score_map, dtype=np.uint8)
        cv2.fillPoly(mask, box[:8].reshape((-1, 4, 2)).astype(np.int32), 1)
        boxes[i, 8] = cv2.mean(score_map, mask)[0]
    boxes = boxes[boxes[:, 8] > box_thresh]

    return boxes, timer 
開發者ID:UpCoder,項目名稱:ICPR_TextDection,代碼行數:58,代碼來源:test.py

示例10: detect

# 需要導入模塊: import lanms [as 別名]
# 或者: from lanms import merge_quadrangle_n9 [as 別名]
def detect(score_map, geo_map, timer, score_map_thresh=0.8, box_thresh=0.1, nms_thres=0.2):
    '''
    restore text boxes from score map and geo map
    :param score_map:
    :param geo_map:[W,H,5]
    :param timer:
    :param score_map_thresh: threshhold for score map
    :param box_thresh: threshhold for boxes
    :param nms_thres: threshold for nms
    :return:
    '''
    if len(score_map.shape) == 4:
        score_map = score_map[0, :, :, 0]
        geo_map = geo_map[0, :, :, ]
    # filter the score map
    xy_text = np.argwhere(score_map > score_map_thresh)
    # sort the text boxes via the y axis
    xy_text = xy_text[np.argsort(xy_text[:, 0])]
    # restore
    start = time.time()
    # xy_text[:, ::-1]*4 滿足條件的pixel的坐標
    # geo_map[xy_text[:, 0], xy_text[:, 1], :] 得到對應點到bounding box 的距離
    text_box_restored = restore_rectangle(xy_text[:, ::-1], geo_map[xy_text[:, 0], xy_text[:, 1], :]) # N*4*2
    print('{} text boxes before nms'.format(text_box_restored.shape[0]))
    boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
    boxes[:, :8] = text_box_restored.reshape((-1, 8))
    boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
    timer['restore'] = time.time() - start
    # nms part
    start = time.time()
    # boxes = nms_locality.nms_locality(boxes.astype(np.float64), nms_thres)
    boxes = lanms.merge_quadrangle_n9(boxes.astype('float32'), nms_thres)
    timer['nms'] = time.time() - start

    if boxes.shape[0] == 0:
        return None, timer

    # here we filter some low score boxes by the average score map, this is different from the orginal paper
    for i, box in enumerate(boxes):
        mask = np.zeros_like(score_map, dtype=np.uint8)
        cv2.fillPoly(mask, box[:8].reshape((-1, 4, 2)).astype(np.int32), 1)
        boxes[i, 8] = cv2.mean(score_map, mask)[0]
    boxes = boxes[boxes[:, 8] > box_thresh]

    return boxes, timer 
開發者ID:UpCoder,項目名稱:ICPR_TextDection,代碼行數:47,代碼來源:pickup_hardsample.py

示例11: detect

# 需要導入模塊: import lanms [as 別名]
# 或者: from lanms import merge_quadrangle_n9 [as 別名]
def detect(score_map, geo_map, timer, score_map_thresh=0.8, box_thresh=0.1, nms_thres=0.2):
    '''
    restore text boxes from score map and geo map
    :param score_map:
    :param geo_map:[W,H,5]
    :param timer:
    :param score_map_thresh: threshhold for score map
    :param box_thresh: threshhold for boxes
    :param nms_thres: threshold for nms
    :return:
    '''
    if len(score_map.shape) == 4:
        score_map = score_map[0, :, :, 0]
        geo_map = geo_map[0, :, :, ]
    # filter the score map
    xy_text = np.argwhere(score_map > score_map_thresh)
    # sort the text boxes via the y axis
    xy_text = xy_text[np.argsort(xy_text[:, 0])]
    # restore
    start = time.time()
    # xy_text[:, ::-1]*4 滿足條件的pixel的坐標
    # geo_map[xy_text[:, 0], xy_text[:, 1], :] 得到對應點到bounding box 的距離
    text_box_restored = restore_rectangle(xy_text[:, ::-1], geo_map[xy_text[:, 0], xy_text[:, 1], :]) # N*4*2
    print('{} text boxes before nms'.format(text_box_restored.shape[0]))
    boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
    boxes[:, :8] = text_box_restored.reshape((-1, 8))
    boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
    timer['restore'] = time.time() - start

    # Modify Start
    # 我們以bounding box內的平均值作為nms的標準而不是一個點的值
    # new_boxes = np.copy(boxes)
    # for i, box in enumerate(new_boxes):
    #     mask = np.zeros_like(score_map, dtype=np.uint8)
    #     cv2.fillPoly(mask, box[:8].reshape((-1, 4, 2)).astype(np.int32), 1)
    #     new_boxes[i, 8] = cv2.mean(score_map, mask)[0]
    # end


    # nms part
    start = time.time()
    # boxes = nms_locality.nms_locality(boxes.astype(np.float64), nms_thres)
    boxes = lanms.merge_quadrangle_n9(boxes.astype('float32'), nms_thres)
    # boxes = lanms.merge_quadrangle_n9(new_boxes.astype('float32'), nms_thres)

    timer['nms'] = time.time() - start

    if boxes.shape[0] == 0:
        return None, timer

    # here we filter some low score boxes by the average score map, this is different from the orginal paper
    for i, box in enumerate(boxes):
        mask = np.zeros_like(score_map, dtype=np.uint8)
        cv2.fillPoly(mask, box[:8].reshape((-1, 4, 2)).astype(np.int32), 1)
        boxes[i, 8] = cv2.mean(score_map, mask)[0]
    boxes = boxes[boxes[:, 8] > box_thresh]

    return boxes, timer 
開發者ID:UpCoder,項目名稱:ICPR_TextDection,代碼行數:60,代碼來源:val_f1score.py

示例12: detect

# 需要導入模塊: import lanms [as 別名]
# 或者: from lanms import merge_quadrangle_n9 [as 別名]
def detect(score_map, geo_map, timer, score_map_thresh=0.8, box_thresh=0.1, nms_thres=0.2):
    '''
    restore text boxes from score map and geo map
    :param score_map:
    :param geo_map:
    :param timer:
    :param score_map_thresh: threshhold for score map
    :param box_thresh: threshhold for boxes
    :param nms_thres: threshold for nms
    :return:
    '''
    if len(score_map.shape) == 4:
        score_map = score_map[0, :, :, 0]
        geo_map = geo_map[0, :, :, ]
    # filter the score map
    xy_text = np.argwhere(score_map > score_map_thresh)
    # sort the text boxes via the y axis
    xy_text = xy_text[np.argsort(xy_text[:, 0])]
    # restore
    start = time.time()
    text_box_restored = restore_rectangle(xy_text[:, ::-1]*4, geo_map[xy_text[:, 0], xy_text[:, 1], :]) # N*4*2
    print('{} text boxes before nms'.format(text_box_restored.shape[0]))
    boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
    boxes[:, :8] = text_box_restored.reshape((-1, 8))
    boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
    timer['restore'] = time.time() - start
    # nms part
    start = time.time()
    # boxes = nms_locality.nms_locality(boxes.astype(np.float64), nms_thres)
    boxes = lanms.merge_quadrangle_n9(boxes.astype('float32'), nms_thres)
    timer['nms'] = time.time() - start

    if boxes.shape[0] == 0:
        return None, timer

    # here we filter some low score boxes by the average score map, this is different from the orginal paper
    for i, box in enumerate(boxes):
        mask = np.zeros_like(score_map, dtype=np.uint8)
        cv2.fillPoly(mask, box[:8].reshape((-1, 4, 2)).astype(np.int32) // 4, 1)
        boxes[i, 8] = cv2.mean(score_map, mask)[0]
    boxes = boxes[boxes[:, 8] > box_thresh]

    return boxes, timer 
開發者ID:HaozhengLi,項目名稱:EAST_ICPR,代碼行數:45,代碼來源:eval.py


注:本文中的lanms.merge_quadrangle_n9方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。