當前位置: 首頁>>代碼示例>>Python>>正文


Python langid.classify方法代碼示例

本文整理匯總了Python中langid.classify方法的典型用法代碼示例。如果您正苦於以下問題:Python langid.classify方法的具體用法?Python langid.classify怎麽用?Python langid.classify使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在langid的用法示例。


在下文中一共展示了langid.classify方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: search

# 需要導入模塊: import langid [as 別名]
# 或者: from langid import classify [as 別名]
def search(self, q):
        payload = {
            "q": q,
            "api_key": self.api_key,
            "limit": self.limit,
            "lang": langid.classify(q)[0],
        }
        query = urlencode(payload, quote_via=quote_plus)

        r = requests.get(f"{self.base_url}search?{query}")
        if r.status_code == 200:
            result = r.json()["data"]
            if len(result) == 0:
                return None

            choiced_gif = random.choice(result)
            url = choiced_gif["images"]["downsized"]["url"]
            attachments = MsgTemplate.make_giphy_template(q, url)

            self.slackbot.send_message(attachments=attachments)
            return True
        else:
            return None 
開發者ID:DongjunLee,項目名稱:quantified-self,代碼行數:25,代碼來源:slackbot.py

示例2: language_filter

# 需要導入模塊: import langid [as 別名]
# 或者: from langid import classify [as 別名]
def language_filter(temp_text, temp_comments, target_language, record_id, url):
    '''Run external component (if installed) for language identification'''
    # sanity check on language
    if target_language is not None:
        if LANGID_FLAG is True:
            # comments
            if len(temp_comments) > len(temp_text):
                langtest = temp_comments
            # default
            else:
                langtest = temp_text
            langresult = langid.classify(langtest)
            if langresult[0] != target_language:
                LOGGER.warning('wrong language: %s %s %s', langresult, record_id, url)
                LOGGER.debug('wrong language: %s %s', langresult, temp_text)
                return True
        else:
            LOGGER.warning('langid not installed, no language detection run')
    return False 
開發者ID:adbar,項目名稱:trafilatura,代碼行數:21,代碼來源:filters.py

示例3: clean_pair

# 需要導入模塊: import langid [as 別名]
# 或者: from langid import classify [as 別名]
def clean_pair(pair):
    bytes_en, bytes_zh = pair
    line_en = str(bytes_en, 'utf-8')
    line_zh = str(bytes_zh, 'utf-8')
    en_words_list = line_en.split()
    en_words = len(en_words_list)
    if en_words < 2: return None
    if en_words > 130 or len(line_en) > 1000: return None
    zh_chars = count_hanzi(line_zh)
    if zh_chars < 2: return None
    if zh_chars > 200 or len(line_zh) > 300: return None
    ratio = zh_chars / en_words
    # Empericially determined from the 1st and 99th percentile in a sample of
    # the UN corpus
    if ratio < 0.6 or ratio > 2.6: return None
    #if not detect(line_en) == 'en': return None
    #if not detect(line_zh)[:2] == 'zh': return None
    if not langid.classify(line_en)[0] == 'en': return None
    if not langid.classify(line_zh)[0] == 'zh': return None
    return ' '.join(en_words_list), ' '.join(line_zh.split()) 
開發者ID:robertostling,項目名稱:hnmt,代碼行數:22,代碼來源:clean_zhen.py

示例4: _get_sent_laser

# 需要導入模塊: import langid [as 別名]
# 或者: from langid import classify [as 別名]
def _get_sent_laser(
        hypothesis: List[str], references: List[List[str]],
        extra_args: Optional[Dict[str, str]] = None
) -> List[float]:
    set_up()

    import laserembeddings
    import langid
    import logging
    logging.getLogger('langid').setLevel(logging.WARNING)

    n_samples = len(hypothesis)
    mid_idx = n_samples // 2
    hypo_lang = langid.classify(hypothesis[mid_idx])[0]
    ref_lang = langid.classify(references[0][mid_idx])[0]

    laser = laserembeddings.Laser()
    hypo_emb = laser.embed_sentences(hypothesis, lang=hypo_lang)
    ref_emb = laser.embed_sentences(references[0], lang=ref_lang)

    inner_product = np.sum(hypo_emb * ref_emb, axis=1)
    hypo_l2 = np.linalg.norm(hypo_emb, axis=1)
    ref_l2 = np.linalg.norm(ref_emb, axis=1)
    return (inner_product / (hypo_l2 * ref_l2)).tolist() 
開發者ID:facebookresearch,項目名稱:vizseq,代碼行數:26,代碼來源:laser.py

示例5: tag_lang_pair

# 需要導入模塊: import langid [as 別名]
# 或者: from langid import classify [as 別名]
def tag_lang_pair(cls, src: str, ref: Optional[str]) -> List[str]:
        machine_tags = []
        src_lang = langid.classify(src)[0]
        ref_lang = None if ref is None else langid.classify(ref)[0]
        if ref is not None and src_lang == ref_lang:
            machine_tags.append(f'lang: {ref_lang}')
        else:
            machine_tags.append(f'src_lang: {src_lang}')
            if ref is not None:
                machine_tags.append(f'trg_lang: {ref_lang}')

        if ref_lang is not None \
                and ref_lang in cls.POTENTIAL_UNSEGMENTED_LANGUAGES \
                and ref.find(' ') == -1:
            machine_tags.append('unsegmented_trg')
        return machine_tags 
開發者ID:facebookresearch,項目名稱:vizseq,代碼行數:18,代碼來源:lang_tagger.py

示例6: language

# 需要導入模塊: import langid [as 別名]
# 或者: from langid import classify [as 別名]
def language():
	import langid
	data = dict(default_data)
	data['message'] = "Language Detection API - Usage: 'text' GET/POST parameter "
	data['langid'] = {}
	params = {}
	

	if request.method == 'GET':
		params['text'] = request.args.get('text')
	elif request.method == 'POST':
		params = request.form # postdata
	else:
		data['error'] = 'Invalid request method'
		return jsonify(data)

	if not params:
		data['error'] = 'Missing parameters'
		return jsonify(data)

	if not params['text']:
		data['error'] = '[text] parameter not found'
		return jsonify(data)

	lang_data = langid.classify( params['text'] ) 
	data['langid']['language'] = lang_data[0]
	data['langid']['score'] = lang_data[1]

	data['message'] = "Detected Language: " + data['langid']['language']

	return jsonify(data) 
開發者ID:web64,項目名稱:nlpserver,代碼行數:33,代碼來源:nlpserver.py

示例7: __init__

# 需要導入模塊: import langid [as 別名]
# 或者: from langid import classify [as 別名]
def __init__(self, channel=None, user=None, input_text=None):
        self.slacker = Slacker(Config.slack.get("TOKEN", "<TOKEN>"))
        self.channel = channel
        self.data_handler = DataHandler()

        self.user = user
        self.channel = channel

        if input_text is None:
            self.lang_code = Config.bot.get("LANG_CODE", "en")
        else:
            self.lang_code = langid.classify(input_text)[0] 
開發者ID:DongjunLee,項目名稱:quantified-self,代碼行數:14,代碼來源:slackbot.py

示例8: __init__

# 需要導入模塊: import langid [as 別名]
# 或者: from langid import classify [as 別名]
def __init__(self, text):
        self.text = text
        self.lang_code = langid.classify(text)[0]

        if self.lang_code == "ko":
            self.instance = KorDisintegrator()
        elif self.lang_code == "en":
            self.instance = EngDisintegrator()
        else:
            self.instance = None 
開發者ID:DongjunLee,項目名稱:quantified-self,代碼行數:12,代碼來源:disintegrator.py

示例9: score

# 需要導入模塊: import langid [as 別名]
# 或者: from langid import classify [as 別名]
def score(
            self, hypothesis: List[str], references: List[List[str]],
            tags: Optional[List[List[str]]] = None
    ) -> VizSeqScore:
        corpus_score, sent_scores, group_scores = None, None, None

        import bert_score as bs
        import langid
        import logging
        logging.getLogger('pytorch_pretrained_bert').setLevel(logging.WARNING)
        logging.getLogger('langid').setLevel(logging.WARNING)

        lang = langid.classify(references[0][0])[0]

        sent_scores = bs.score(
            hypothesis, references[0], nthreads=self.n_workers, lang=lang,
            verbose=self.verbose
        )[2].tolist()

        if self.corpus_level:
            corpus_score = np.mean(sent_scores)

        if tags is not None:
            tag_set = self._unique(tags)
            group_scores = {}
            for t in tag_set:
                indices = [i for i, cur in enumerate(tags) if t in cur]
                group_scores[t] = np.mean([sent_scores[i] for i in indices])

        return VizSeqScore.make(
                corpus_score=corpus_score, sent_scores=sent_scores,
                group_scores=group_scores
            ) 
開發者ID:facebookresearch,項目名稱:vizseq,代碼行數:35,代碼來源:bert_score.py

示例10: tag_lang

# 需要導入模塊: import langid [as 別名]
# 或者: from langid import classify [as 別名]
def tag_lang(cls, ref: str) -> str:
        return langid.classify(ref)[0] 
開發者ID:facebookresearch,項目名稱:vizseq,代碼行數:4,代碼來源:lang_tagger.py

示例11: process

# 需要導入模塊: import langid [as 別名]
# 或者: from langid import classify [as 別名]
def process(line,dataset,essay_id):
    changes=0
    row = json.loads(re.sub(r'[\x00-\x1F]+', '', line))
    if args.language != row[2]:
        return False, 0
    map=[]
    num=0
    match=0
    correction = False
    for i in range(len(row[4])):
        row[4][i] = re.sub('\s+',' ', row[4][i].strip())
        row[4][i] = clean_sentence(row[4][i])
        if len(row[4][i]):
            num+=1
            s_language, _ = langid.classify(row[4][i])
            if s_language==args.id:
                match+=1
                if correction == False:
                    for each in row[5][i]:
                        if each:
                            each = re.sub('\s+', ' ', each.strip())
                            each = clean_sentence(each)
                            if len(each):
                                t_language, _ = langid.classify(each)
                                if t_language == args.id and row[4][i] != each:
                                    correction = True
                                    break
            map.append(s_language)
        else:
            map.append('null')
    if match < 2 or correction == False:
        return False, 0
    essay=ET.SubElement(dataset, 'essay', attrib={'id': str(essay_id), 'journal_id':row[0], 'user_id':row[1], 'learning_language':row[2], 'native_language':row[3]})
    sentence_id = 0
    for i in range(len(row[4])):
        if len(row[4][i]):
            sentence=ET.SubElement(essay,'sentence', attrib={'id':str(sentence_id)})
            source=ET.SubElement(sentence,'source')
            source.text=row[4][i]
            source.set("langid",map[i])
            for each in row[5][i]:
                if each:
                    each = re.sub('\s+',' ', each.strip())
                    each = clean_sentence(each)
                    if len(each):
                        target=ET.SubElement(sentence,'target')
                        target.text=each
                        t_language, _ = langid.classify(target.text)
                        target.set("langid",t_language)
                        if t_language==args.id and source.text!=target.text:
                            changes+=1
            sentence_id += 1
    return True, changes 
開發者ID:nusnlp,項目名稱:crosentgec,代碼行數:55,代碼來源:lang8_preprocess.py

示例12: detect_lang

# 需要導入模塊: import langid [as 別名]
# 或者: from langid import classify [as 別名]
def detect_lang(main, file):
    text = ''

    try:
        with open(file['path'], 'r', encoding = file['encoding']) as f:
            if main.settings_custom['auto_detection']['detection_settings']['number_lines_no_limit']:
                for line in f:
                    text += line
            else:
                for i, line in enumerate(f):
                    if i < main.settings_custom['auto_detection']['detection_settings']['number_lines']:
                        text += line
                    else:
                        break

        lang_code_639_1 = langid.classify(text)[0]

        # Chinese (Simplified) & Chinese (Traditional)
        if lang_code_639_1 == 'zh':
            lang_code_639_1 = 'zh_cn'

            for lang in sorted(langdetect.detect_langs(text), key = lambda item: -item.prob):
                if lang.lang in ['zh-cn', 'zh-tw']:
                    lang_code_639_1 = lang.lang.replace('-', '_')

                    break
        # Norwegian Bokmål
        elif lang_code_639_1 == 'no':
            lang_code_639_1 = 'nb'

        # Serbian (Cyrillic)
        elif lang_code_639_1 == 'sr':
            lang_code_639_1 = 'sr_cyrl'

        lang = wl_conversion.to_iso_639_3(main, lang_code_639_1)

        success = True
    except:
        lang = main.settings_custom['auto_detection']['default_settings']['default_lang']

        success = False

    return lang, success 
開發者ID:BLKSerene,項目名稱:Wordless,代碼行數:45,代碼來源:wl_detection.py

示例13: extract_corrections

# 需要導入模塊: import langid [as 別名]
# 或者: from langid import classify [as 別名]
def extract_corrections(file):
  """Search for sentences and corrections from Lang-8 HTML"""
  #import json
  import os.path
  import langid
  fname = os.path.basename(file)
  if not os.path.isfile(file):
    return

  import re
  re_sentences   = re.compile(r'.*",\["(.*)"\],\[\[.*')
  re_corrections = re.compile(r'.*\],\[\[(.*)\]\]\]')

  sentences           = "[]"
  corrections         = "[]"
  language	      = ""
  for line in open(file, 'r'):
    line = line.rstrip()
    journal_id = line.split(',')[0][2:-1]
    author_id = line.split(',')[1][1:-1]
    language = line.split(',')[3][1:-1]
    m = re_sentences.match(line)
    if m:
      sentences = re.split('","',m.group(1))
    m = re_corrections.match(line)
    if m:
      corrections = re.split('\],\[',m.group(1))
      if len(sentences) != len (corrections) : continue
      empty = False
      for x in range(0,len(corrections)):
        if len(corrections[x])>0 : break
        if x == len(corrections)-1 : empty = True
      if empty : continue
      for x in range(0,len(corrections)):
	lang, prob = langid.classify(sentences[x])
        if lang!='en' : continue
        if len(corrections[x])>0 :
          corrections[x] = corrections[x][1:-1]
        if corrections[x] == '':
          print journal_id+'\t'+author_id+'\t'+language+'\t'+sentences[x]+'\t'+sentences[x]
        else:
          for corr in re.split('","',corrections[x]) :
            lang, prob = langid.classify(corr)
            if lang!='en' : continue
            if len(corr.split(" ,.")) - len(sentences[x].split(" ,.")) > 5 : continue
            else :
              print journal_id+'\t'+author_id+'\t'+language+'\t'+sentences[x]+'\t'+corr 
開發者ID:nusnlp,項目名稱:mlconvgec2018,代碼行數:49,代碼來源:langidfilter.py


注:本文中的langid.classify方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。