當前位置: 首頁>>代碼示例>>Python>>正文


Python client.BatchV1Api方法代碼示例

本文整理匯總了Python中kubernetes.client.BatchV1Api方法的典型用法代碼示例。如果您正苦於以下問題:Python client.BatchV1Api方法的具體用法?Python client.BatchV1Api怎麽用?Python client.BatchV1Api使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在kubernetes.client的用法示例。


在下文中一共展示了client.BatchV1Api方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: copy_dataset

# 需要導入模塊: from kubernetes import client [as 別名]
# 或者: from kubernetes.client import BatchV1Api [as 別名]
def copy_dataset():
  """Install Benchmark Addons."""
  logging.basicConfig(level=logging.INFO,
                      format=('%(asctime)s %(name)-12s %(levelname)-8s %(message)s'),
                      datefmt='%Y-%m-%dT%H:%M:%S',
                      )
  logging.getLogger().setLevel(logging.INFO)

  args = parse_args()
  namespace = args.namespace
  kubeconfig_path = str(os.environ['KUBECONFIG'])
  api_client = deploy_utils.create_k8s_client(kubeconfig_path)

  batchv1_api = k8s_client.BatchV1Api(api_client)

  # need pvc, s3 bucket dataset name
  deployment = create_job_object(args.runner_image, args.region, args.s3_import_path, args.pvc)
  batchv1_api.create_namespaced_job(namespace, deployment)

  # describe
  logging.info("Wait for data copy finish.")
  wait_for_job(api_client, namespace, "copy-dataset-worker")
  logging.info("Finish copy data from %s to pvc %s", args.s3_import_path, args.pvc) 
開發者ID:aws-samples,項目名稱:aws-eks-deep-learning-benchmark,代碼行數:25,代碼來源:copy_dataset.py

示例2: undeploy

# 需要導入模塊: from kubernetes import client [as 別名]
# 或者: from kubernetes.client import BatchV1Api [as 別名]
def undeploy(self):
        """
        Undeploy all the components, such as trainer and rollout worker(s), Redis pub/sub and data store, when required.
        """

        trainer_params = self.params.run_type_params.get(str(RunType.TRAINER), None)
        api_client = k8sclient.BatchV1Api()
        delete_options = k8sclient.V1DeleteOptions(
            propagation_policy="Foreground"
        )

        if trainer_params:
            try:
                api_client.delete_namespaced_job(trainer_params.orchestration_params['job_name'], self.params.namespace, delete_options)
            except k8sclient.rest.ApiException as e:
                print("Got exception: %s\n while deleting trainer", e)
        worker_params = self.params.run_type_params.get(str(RunType.ROLLOUT_WORKER), None)
        if worker_params:
            try:
                api_client.delete_namespaced_job(worker_params.orchestration_params['job_name'], self.params.namespace, delete_options)
            except k8sclient.rest.ApiException as e:
                print("Got exception: %s\n while deleting workers", e)
        self.memory_backend.undeploy()
        self.data_store.undeploy() 
開發者ID:NervanaSystems,項目名稱:coach,代碼行數:26,代碼來源:kubernetes_orchestrator.py

示例3: __init__

# 需要導入模塊: from kubernetes import client [as 別名]
# 或者: from kubernetes.client import BatchV1Api [as 別名]
def __init__(self, bearer_token=None):
        '''
        Initialize connection to Kubernetes
        '''
        self.bearer_token = bearer_token
        api_client = None

        try:
            config.load_incluster_config()
        except config.config_exception.ConfigException:
            config.load_kube_config()

        if self.bearer_token:
            # Configure API key authorization: Bearer Token
            configuration = client.Configuration()
            configuration.api_key_prefix['authorization'] = 'Bearer'
            configuration.api_key['authorization'] = self.bearer_token
            api_client = client.ApiClient(configuration)

        self.client = client.CoreV1Api(api_client)
        self.batch_api = client.BatchV1Api(api_client)
        self.batch_v1beta1_api = client.BatchV1beta1Api(api_client)
        self.custom_objects = client.CustomObjectsApi(api_client)
        self.api_extensions = client.ApiextensionsV1beta1Api(api_client)
        self.extension_api = client.ExtensionsV1beta1Api(api_client)
        self.apps_v1_api = client.AppsV1Api(api_client) 
開發者ID:airshipit,項目名稱:armada,代碼行數:28,代碼來源:k8s.py

示例4: main

# 需要導入模塊: from kubernetes import client [as 別名]
# 或者: from kubernetes.client import BatchV1Api [as 別名]
def main():
    # Configs can be set in Configuration class directly or using helper
    # utility. If no argument provided, the config will be loaded from
    # default location.
    config.load_kube_config()
    batch_v1 = client.BatchV1Api()
    # Create a job object with client-python API. The job we
    # created is same as the `pi-job.yaml` in the /examples folder.
    job = create_job_object()

    create_job(batch_v1, job)

    update_job(batch_v1, job)

    delete_job(batch_v1) 
開發者ID:kubernetes-client,項目名稱:python,代碼行數:17,代碼來源:job_crud.py

示例5: __init__

# 需要導入模塊: from kubernetes import client [as 別名]
# 或者: from kubernetes.client import BatchV1Api [as 別名]
def __init__(self):
        '''
        Initialize connection to Kubernetes
        '''
        try:
            config.load_incluster_config()
        except config.config_exception.ConfigException:
            config.load_kube_config()

        self.client = client.CoreV1Api()
        self.batch_api = client.BatchV1Api()
        self.batch_v1beta1_api = client.BatchV1beta1Api()
        self.extension_api = client.ExtensionsV1beta1Api() 
開發者ID:att-comdev,項目名稱:armada,代碼行數:15,代碼來源:k8s.py

示例6: wait_for_job

# 需要導入模塊: from kubernetes import client [as 別名]
# 或者: from kubernetes.client import BatchV1Api [as 別名]
def wait_for_job(api_client,
                        namespace,
                        name,
                        timeout_minutes=20,
                        replicas=1):
  """Wait for deployment to be ready.
  Args:
    api_client: K8s api client to use.
    namespace: The name space for the deployment.
    name: The name of the deployment.
    timeout_minutes: Timeout interval in minutes.
    replicas: Number of replicas that must be running.
  Returns:
    deploy: The deploy object describing the deployment.
  Raises:
    TimeoutError: If timeout waiting for deployment to be ready.
  """
  # Wait for tiller to be ready
  end_time = datetime.datetime.now() + datetime.timedelta(
    minutes=timeout_minutes)

  ext_client = k8s_client.BatchV1Api(api_client)

  while datetime.datetime.now() < end_time:
    deploy = ext_client.read_namespaced_job(name, namespace)
    # ready_replicas could be None
    if (deploy.status.succeeded and
        deploy.status.succeeded >= replicas):
      logging.info("Job %s in namespace %s is ready", name, namespace)
      return deploy
    logging.info("Waiting for job %s in namespace %s", name, namespace)
    time.sleep(10)

  logging.error("Timeout waiting for Job %s in namespace %s to be "
                "ready", name, namespace)
  util.run(["kubectl", "describe", "job", "-n", namespace, name])
  raise TimeoutError(
    "Timeout waiting for job {0} in namespace {1}".format(
      name, namespace)) 
開發者ID:aws-samples,項目名稱:aws-eks-deep-learning-benchmark,代碼行數:41,代碼來源:copy_dataset.py

示例7: create_job

# 需要導入模塊: from kubernetes import client [as 別名]
# 或者: from kubernetes.client import BatchV1Api [as 別名]
def create_job(job_body, namespace='default'):
    config.load_kube_config()
    v1 = client.BatchV1Api()

    job = v1.create_namespaced_job(body=job_body, namespace=namespace)
    return job 
開發者ID:GoogleCloudPlatform,項目名稱:ml-on-gcp,代碼行數:8,代碼來源:kubernetes_helper.py

示例8: delete_job

# 需要導入模塊: from kubernetes import client [as 別名]
# 或者: from kubernetes.client import BatchV1Api [as 別名]
def delete_job(job_name, namespace='default'):
    config.load_kube_config()
    batch_v1 = client.BatchV1Api()

    print('deleting job {} with namespace {}'.format(job_name, namespace))
    delete = batch_v1.delete_namespaced_job(name=job_name, body=client.V1DeleteOptions(), namespace=namespace)
    return delete 
開發者ID:GoogleCloudPlatform,項目名稱:ml-on-gcp,代碼行數:9,代碼來源:kubernetes_helper.py

示例9: __init__

# 需要導入模塊: from kubernetes import client [as 別名]
# 或者: from kubernetes.client import BatchV1Api [as 別名]
def __init__(self):
        self.logger = logging.getLogger(__name__)
        try:
            config_file = os.path.expanduser(kubeconfig_filepath)
            config.load_kube_config(config_file=config_file)
        except:
            self.logger.warning("unable to load kube-config")

        self.v1 = client.CoreV1Api()
        self.v1Beta1 = client.AppsV1beta1Api()
        self.extensionsV1Beta1 = client.ExtensionsV1beta1Api()
        self.autoscalingV1Api = client.AutoscalingV1Api()
        self.rbacApi = client.RbacAuthorizationV1beta1Api()
        self.batchV1Api = client.BatchV1Api()
        self.batchV2Api = client.BatchV2alpha1Api() 
開發者ID:cloudnativelabs,項目名稱:kube-shell,代碼行數:17,代碼來源:client.py

示例10: k8s_batch_api

# 需要導入模塊: from kubernetes import client [as 別名]
# 或者: from kubernetes.client import BatchV1Api [as 別名]
def k8s_batch_api(self):
        if not self._k8s_batch_api:
            self._k8s_batch_api = client.BatchV1Api(self.api_client)
        return self._k8s_batch_api 
開發者ID:polyaxon,項目名稱:polyaxon,代碼行數:6,代碼來源:manager.py

示例11: submit

# 需要導入模塊: from kubernetes import client [as 別名]
# 或者: from kubernetes.client import BatchV1Api [as 別名]
def submit(args):
    def kubernetes_submit(nworker, nserver, pass_envs):
        sv_image = args.kube_server_image
        wk_image = args.kube_worker_image
        if args.jobname is not None:
            r_uri = "mx-" + args.jobname + "-sched"
        else:
            r_uri = "mx-sched"
        r_port = 9091
        sd_envs = create_env( r_uri, r_port, nserver, nworker )
        mn_jobs = []
        mn_sh_job = create_sched_job_manifest( str(nworker), str(nserver), sd_envs, sv_image, args.command)
        mn_sh_svc = create_sched_svc_manifest(r_uri, r_port)
        
        for i in range(nserver):
            envs = create_env( r_uri, r_port, nserver, nworker )
            mn_sv = create_ps_manifest( str(i), str(nserver), args.jobname, envs, sv_image, args.command, args.kube_server_template )
            mn_jobs.append(mn_sv)

        for i in range(nworker):
            envs = create_env( r_uri, r_port, nserver, nworker )
            mn_wk = create_wk_manifest( str(i), str(nworker), str(nserver), args.jobname, envs, wk_image, args.command, args.kube_worker_template )
            mn_jobs.append(mn_wk)

        config.load_kube_config()
        k8s_coreapi = client.CoreV1Api()
        k8s_batch = client.BatchV1Api()
        resp = k8s_batch.create_namespaced_job(namespace=args.kube_namespace, body=mn_sh_job)
        print( resp.kind + " " + resp.metadata.name +" is created." )
        resp = k8s_coreapi.create_namespaced_service(namespace="default", body=mn_sh_svc)
        print( resp.kind + " " + resp.metadata.name +" is created." )
        for m in mn_jobs:
            resp = k8s_batch.create_namespaced_job(
                    body=m, namespace="default")
            print( resp.kind + " " + resp.metadata.name +" is created." )


        return kubernetes_submit

    tracker.submit(args.num_workers, args.num_servers,
                   fun_submit=kubernetes_submit,
                   pscmd="echo \"To check each log, try 'kubectl logs job/{{role}}-{{jobname}}-{{workerID}}'\"") 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:44,代碼來源:kubernetes.py


注:本文中的kubernetes.client.BatchV1Api方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。