當前位置: 首頁>>代碼示例>>Python>>正文


Python keras_layer_normalization.LayerNormalization方法代碼示例

本文整理匯總了Python中keras_layer_normalization.LayerNormalization方法的典型用法代碼示例。如果您正苦於以下問題:Python keras_layer_normalization.LayerNormalization方法的具體用法?Python keras_layer_normalization.LayerNormalization怎麽用?Python keras_layer_normalization.LayerNormalization使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras_layer_normalization的用法示例。


在下文中一共展示了keras_layer_normalization.LayerNormalization方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_custom_objects

# 需要導入模塊: import keras_layer_normalization [as 別名]
# 或者: from keras_layer_normalization import LayerNormalization [as 別名]
def get_custom_objects() -> dict:
    return {
        'gelu': gelu,
        'EmbeddingRet': EmbeddingRet,
        'EmbeddingSim': EmbeddingSim,
        'CreateMask': CreateMask,
        'RestoreMask': RestoreMask,
        'PositionalEmbedding': PositionalEmbedding,
        'PermutationMask': PermutationMask,
        'MaskEmbedding': MaskEmbedding,
        'RelativeBias': RelativeBias,
        'SegmentBias': SegmentBias,
        'RelativeSegmentEmbedding': RelativeSegmentEmbedding,
        'Memory': Memory,
        'LayerNormalization': LayerNormalization,
        'RelativePartialMultiHeadSelfAttention': Attention,
        'FeedForward': FeedForward,
    } 
開發者ID:CyberZHG,項目名稱:keras-xlnet,代碼行數:20,代碼來源:xlnet.py

示例2: _wrap_layer

# 需要導入模塊: import keras_layer_normalization [as 別名]
# 或者: from keras_layer_normalization import LayerNormalization [as 別名]
def _wrap_layer(name, input_layer, build_func, trainable=True):
    """Wrap layers with normalization and residual.

    :param name: Prefix of names for internal layers.
    :param input_layer: Input layer.
    :param build_func: A callable that takes the input tensor and generates the output tensor.
    :param trainable: Whether the layers are trainable.
    :return: Output layer.
    """
    normal_layer = LayerNormalization(
        trainable=trainable,
        name='%s-Norm' % name,
    )(input_layer)
    build_output = build_func(normal_layer)
    return keras.layers.Add(name='%s-Add' % name)([input_layer, build_output]) 
開發者ID:CyberZHG,項目名稱:keras-gpt-2,代碼行數:17,代碼來源:model.py

示例3: test_save_load_json

# 需要導入模塊: import keras_layer_normalization [as 別名]
# 或者: from keras_layer_normalization import LayerNormalization [as 別名]
def test_save_load_json(self):
        model = keras.models.Sequential()
        model.add(LayerNormalization(input_shape=(2, 3)))
        model.compile(optimizer='adam', loss='mse')
        encoded = model.to_json()
        model = keras.models.model_from_json(encoded, custom_objects={'LayerNormalization': LayerNormalization})
        model.summary() 
開發者ID:CyberZHG,項目名稱:keras-layer-normalization,代碼行數:9,代碼來源:test_layer_normalization.py

示例4: get_custom_objects

# 需要導入模塊: import keras_layer_normalization [as 別名]
# 或者: from keras_layer_normalization import LayerNormalization [as 別名]
def get_custom_objects():
    return {
        'gelu': gelu,
        'LayerNormalization': LayerNormalization,
        'MultiHeadAttention': MultiHeadAttention,
        'FeedForward': FeedForward,
        'TrigPosEmbedding': TrigPosEmbedding,
        'EmbeddingRet': EmbeddingRet,
        'EmbeddingSim': EmbeddingSim,
    } 
開發者ID:CyberZHG,項目名稱:keras-transformer,代碼行數:12,代碼來源:transformer.py

示例5: _wrap_layer

# 需要導入模塊: import keras_layer_normalization [as 別名]
# 或者: from keras_layer_normalization import LayerNormalization [as 別名]
def _wrap_layer(name,
                input_layer,
                build_func,
                dropout_rate=0.0,
                trainable=True):
    """Wrap layers with residual, normalization and dropout.

    :param name: Prefix of names for internal layers.
    :param input_layer: Input layer.
    :param build_func: A callable that takes the input tensor and generates the output tensor.
    :param dropout_rate: Dropout rate.
    :param trainable: Whether the layers are trainable.
    :return: Output layer.
    """
    build_output = build_func(input_layer)
    if dropout_rate > 0.0:
        dropout_layer = keras.layers.Dropout(
            rate=dropout_rate,
            name='%s-Dropout' % name,
        )(build_output)
    else:
        dropout_layer = build_output
    if isinstance(input_layer, list):
        input_layer = input_layer[0]
    add_layer = keras.layers.Add(name='%s-Add' % name)([input_layer, dropout_layer])
    normal_layer = LayerNormalization(
        trainable=trainable,
        name='%s-Norm' % name,
    )(add_layer)
    return normal_layer 
開發者ID:CyberZHG,項目名稱:keras-transformer,代碼行數:32,代碼來源:transformer.py

示例6: get_custom_objects

# 需要導入模塊: import keras_layer_normalization [as 別名]
# 或者: from keras_layer_normalization import LayerNormalization [as 別名]
def get_custom_objects():
    return {
        'AdaptiveEmbedding': AdaptiveEmbedding,
        'AdaptiveSoftmax': AdaptiveSoftmax,
        'Scale': Scale,
        'Memory': Memory,
        'LayerNormalization': LayerNormalization,
        'FeedForward': FeedForward,
        'PositionalEmbedding': PositionalEmbedding,
        'RelativeBias': RelativeBias,
        'RelativePartialMultiHeadSelfAttention': RelativePartialMultiHeadSelfAttention,
    } 
開發者ID:CyberZHG,項目名稱:keras-transformer-xl,代碼行數:14,代碼來源:transformer_xl.py

示例7: test_sample

# 需要導入模塊: import keras_layer_normalization [as 別名]
# 或者: from keras_layer_normalization import LayerNormalization [as 別名]
def test_sample(self):
        input_layer = keras.layers.Input(
            shape=(2, 3),
            name='Input',
        )
        norm_layer = LayerNormalization(
            name='Layer-Normalization',
        )(input_layer)
        model = keras.models.Model(
            inputs=input_layer,
            outputs=norm_layer,
        )
        model.compile(
            optimizer='adam',
            loss='mse',
            metrics={},
        )
        model.summary()
        inputs = np.array([[
            [0.2, 0.1, 0.3],
            [0.5, 0.1, 0.1],
        ]])
        predict = model.predict(inputs)
        expected = np.asarray([[
            [0.0, -1.22474487, 1.22474487],
            [1.41421356, -0.707106781, -0.707106781],
        ]])
        self.assertTrue(np.allclose(expected, predict), predict)

        input_layer = keras.layers.Input(
            shape=(10, 256),
            name='Input',
        )
        norm_layer = LayerNormalization(
            name='Layer-Normalization',
            beta_initializer='ones',
        )(input_layer)
        model = keras.models.Model(
            inputs=input_layer,
            outputs=norm_layer,
        )
        model.compile(
            optimizer='adam',
            loss='mse',
            metrics={},
        )
        model.summary()
        inputs = np.zeros((2, 10, 256))
        predict = model.predict(inputs)
        expected = np.ones((2, 10, 256))
        self.assertTrue(np.allclose(expected, predict)) 
開發者ID:CyberZHG,項目名稱:keras-layer-normalization,代碼行數:53,代碼來源:test_layer_normalization.py

示例8: test_fit_zeros

# 需要導入模塊: import keras_layer_normalization [as 別名]
# 或者: from keras_layer_normalization import LayerNormalization [as 別名]
def test_fit_zeros(self):
        def _leaky_relu(x):
            return keras.activations.relu(x, alpha=0.01)

        input_layer = keras.layers.Input(
            shape=(2, 3),
            name='Input',
        )
        norm_layer = LayerNormalization(
            name='Layer-Normalization-1',
            trainable=False,
        )(input_layer)
        att_layer = MultiHeadAttention(
            head_num=3,
            activation=_leaky_relu,
            name='Multi-Head-Attentions'
        )(norm_layer)
        dense_layer = keras.layers.Dense(units=3, name='Dense-1')(att_layer)
        norm_layer = LayerNormalization(
            name='Layer-Normalization-2',
            trainable=False,
        )(dense_layer)
        dense_layer = keras.layers.Dense(units=3, name='Dense-2')(norm_layer)
        model = keras.models.Model(
            inputs=input_layer,
            outputs=dense_layer,
        )
        model.compile(
            optimizer=keras.optimizers.Adam(lr=1e-3),
            loss='mse',
            metrics={},
        )
        model.summary()

        def _generator_zeros(batch_size=32):
            while True:
                batch_inputs = np.zeros((batch_size, 2, 3))
                batch_outputs = np.asarray([[[0.0, -0.1, 0.2]] * 2] * batch_size)
                yield batch_inputs, batch_outputs

        model.fit_generator(
            generator=_generator_zeros(),
            steps_per_epoch=1000,
            epochs=10,
            validation_data=_generator_zeros(),
            validation_steps=100,
            callbacks=[
                keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)
            ],
        )
        for inputs, _ in _generator_zeros(batch_size=3):
            predicts = model.predict(inputs)
            expect = np.round(np.asarray([[[0.0, -0.1, 0.2]] * 2] * 3), decimals=1)
            actual = np.round(predicts, decimals=1)
            self.assertTrue(np.allclose(expect, actual), (expect, actual))
            break 
開發者ID:CyberZHG,項目名稱:keras-layer-normalization,代碼行數:58,代碼來源:test_layer_normalization.py


注:本文中的keras_layer_normalization.LayerNormalization方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。