當前位置: 首頁>>代碼示例>>Python>>正文


Python RoiPoolingConv.RoiPoolingConv方法代碼示例

本文整理匯總了Python中keras_frcnn.RoiPoolingConv.RoiPoolingConv方法的典型用法代碼示例。如果您正苦於以下問題:Python RoiPoolingConv.RoiPoolingConv方法的具體用法?Python RoiPoolingConv.RoiPoolingConv怎麽用?Python RoiPoolingConv.RoiPoolingConv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras_frcnn.RoiPoolingConv的用法示例。


在下文中一共展示了RoiPoolingConv.RoiPoolingConv方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: classifier

# 需要導入模塊: from keras_frcnn import RoiPoolingConv [as 別名]
# 或者: from keras_frcnn.RoiPoolingConv import RoiPoolingConv [as 別名]
def classifier(base_layers, input_rois, num_rois, nb_classes = 21, trainable=False):

    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 14
        input_shape = (num_rois,14,14,1024)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois,1024,7,7)

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])
    out = classifier_layers(out_roi_pool, input_shape=input_shape, trainable=True)

    out = TimeDistributed(Flatten())(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)
    return [out_class, out_regr] 
開發者ID:akshaylamba,項目名稱:FasterRCNN_KERAS,代碼行數:22,代碼來源:resnet.py

示例2: classifier

# 需要導入模塊: from keras_frcnn import RoiPoolingConv [as 別名]
# 或者: from keras_frcnn.RoiPoolingConv import RoiPoolingConv [as 別名]
def classifier(base_layers, input_rois, num_rois, nb_classes = 21, trainable=False):

    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 7
        input_shape = (num_rois,7,7,512)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois,512,7,7)

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])

    out = TimeDistributed(Flatten(name='flatten'))(out_roi_pool)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc1'))(out)
    out = TimeDistributed(Dropout(0.5))(out)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc2'))(out)
    out = TimeDistributed(Dropout(0.5))(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)

    return [out_class, out_regr] 
開發者ID:kbardool,項目名稱:keras-frcnn,代碼行數:26,代碼來源:vgg.py

示例3: classifier

# 需要導入模塊: from keras_frcnn import RoiPoolingConv [as 別名]
# 或者: from keras_frcnn.RoiPoolingConv import RoiPoolingConv [as 別名]
def classifier(base_layers, input_rois, num_rois, nb_classes=21, trainable=False):

    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 14
        # Changed the input shape to 1088 from 1024 because of nn_base's output being 1088. Not sure if this is correct
        input_shape = (num_rois, 14, 14, 1088)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois, 1024, 7, 7)

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])
    out = classifier_layers(out_roi_pool, input_shape=input_shape, trainable=True)

    out = TimeDistributed(Flatten())(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)
    return [out_class, out_regr] 
開發者ID:you359,項目名稱:Keras-FasterRCNN,代碼行數:23,代碼來源:inception_resnet_v2.py

示例4: classifier

# 需要導入模塊: from keras_frcnn import RoiPoolingConv [as 別名]
# 或者: from keras_frcnn.RoiPoolingConv import RoiPoolingConv [as 別名]
def classifier(base_layers, input_rois, num_rois, nb_classes = 21, trainable=False):

    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 7
        input_shape = (num_rois, 7, 7, 512)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois, 512, 7, 7)

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])

    out = TimeDistributed(Flatten(name='flatten'))(out_roi_pool)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc1'))(out)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc2'))(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)

    return [out_class, out_regr] 
開發者ID:you359,項目名稱:Keras-FasterRCNN,代碼行數:24,代碼來源:vgg.py

示例5: classifier

# 需要導入模塊: from keras_frcnn import RoiPoolingConv [as 別名]
# 或者: from keras_frcnn.RoiPoolingConv import RoiPoolingConv [as 別名]
def classifier(base_layers, input_rois, num_rois, nb_classes=21, trainable=False):

    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 14
        input_shape = (num_rois, 14, 14, 1024)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois, 1024, 7, 7)

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])
    out = classifier_layers(out_roi_pool, input_shape=input_shape, trainable=True)

    out = TimeDistributed(Flatten())(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)
    return [out_class, out_regr] 
開發者ID:you359,項目名稱:Keras-FasterRCNN,代碼行數:22,代碼來源:resnet.py

示例6: classifier

# 需要導入模塊: from keras_frcnn import RoiPoolingConv [as 別名]
# 或者: from keras_frcnn.RoiPoolingConv import RoiPoolingConv [as 別名]
def classifier(base_layers, input_rois, num_rois, nb_classes,trainable=True):
    """
    The final classifier to match original implementation for VGG-16
    The only difference being the Roipooling layer uses tensorflow's bilinear interpolation
    """
    
    pooling_regions = 7
    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois,trainable=trainable)([base_layers, input_rois])

    out = TimeDistributed(Flatten(),name="flatten",trainable=trainable)(out_roi_pool)
    out = TimeDistributed(Dense(4096, activation='relu',trainable=trainable),name="fc1",trainable=trainable)(out)
    out = TimeDistributed(Dropout(0.5),name="drop_out1",trainable=trainable)(out) # add dropout to match original implememtation
    out = TimeDistributed(Dense(4096, activation='relu',trainable=trainable),name="fc2",trainable=trainable)(out)
    out = TimeDistributed(Dropout(0.5),name="drop_out2",trainable=trainable)(out) # add dropout to match original implementation

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero',trainable=trainable), name='dense_class_{}'.format(nb_classes),trainable=trainable)(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero',trainable=trainable), name='dense_regress_{}'.format(nb_classes),trainable=trainable)(out)

    return [out_class, out_regr] 
開發者ID:Abhijit-2592,項目名稱:Keras_object_detection,代碼行數:22,代碼來源:nn_arch_vgg16.py

示例7: classifier

# 需要導入模塊: from keras_frcnn import RoiPoolingConv [as 別名]
# 或者: from keras_frcnn.RoiPoolingConv import RoiPoolingConv [as 別名]
def classifier(base_layers, input_rois, num_rois, nb_classes = 21, trainable=True):

    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 14
        input_shape = (num_rois,14,14,1024)
    elif K.backend() == 'theano':
        raise ValueError("Theano backend not supported")

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois,trainable=trainable)([base_layers, input_rois])
    out = classifier_layers(out_roi_pool, input_shape=input_shape, trainable=True)

    out = TimeDistributed(Flatten())(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero',trainable=trainable), name='dense_class_{}'.format(nb_classes),trainable=trainable)(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero',trainable=trainable), name='dense_regress_{}'.format(nb_classes),trainable=trainable)(out)
    return [out_class, out_regr] 
開發者ID:Abhijit-2592,項目名稱:Keras_object_detection,代碼行數:21,代碼來源:nn_arch_resnet50.py

示例8: classifier

# 需要導入模塊: from keras_frcnn import RoiPoolingConv [as 別名]
# 或者: from keras_frcnn.RoiPoolingConv import RoiPoolingConv [as 別名]
def classifier(base_layers, input_rois, num_rois, nb_classes=21, trainable=False):
    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 14
        input_shape = (num_rois, 14, 14, 1024)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois, 1024, 7, 7)

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])
    out = classifier_layers(out_roi_pool, input_shape=input_shape, trainable=True)

    out = TimeDistributed(Flatten())(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'),
                                name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes - 1), activation='linear', kernel_initializer='zero'),
                               name='dense_regress_{}'.format(nb_classes))(out)
    return [out_class, out_regr] 
開發者ID:moyiliyi,項目名稱:keras-faster-rcnn,代碼行數:23,代碼來源:resnet101.py

示例9: classifier

# 需要導入模塊: from keras_frcnn import RoiPoolingConv [as 別名]
# 或者: from keras_frcnn.RoiPoolingConv import RoiPoolingConv [as 別名]
def classifier(base_layers, input_rois, num_rois, nb_classes = 21, trainable=False):

    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 7
        input_shape = (num_rois,7,7,512)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois,512,7,7)

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])

    out = TimeDistributed(Flatten(name='flatten'))(out_roi_pool)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc1'))(out)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc2'))(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)

    return [out_class, out_regr] 
開發者ID:AdamSpannbauer,項目名稱:ssbm_fox_detector,代碼行數:24,代碼來源:vgg.py

示例10: classifier

# 需要導入模塊: from keras_frcnn import RoiPoolingConv [as 別名]
# 或者: from keras_frcnn.RoiPoolingConv import RoiPoolingConv [as 別名]
def classifier(base_layers, input_rois, num_rois, nb_classes = 21, trainable=False):

    if K.backend() == 'tensorflow':
        pooling_regions = 14
        input_shape = (num_rois,14,14,1024)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois,1024,7,7)

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])
    out = classifier_layers(out_roi_pool, input_shape=input_shape, trainable=True)

    out = TimeDistributed(Flatten())(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)
    return [out_class, out_regr] 
開發者ID:salman-h-khan,項目名稱:ZSD_Release,代碼行數:20,代碼來源:resnet.py

示例11: classifier

# 需要導入模塊: from keras_frcnn import RoiPoolingConv [as 別名]
# 或者: from keras_frcnn.RoiPoolingConv import RoiPoolingConv [as 別名]
def classifier(base_layers,input_rois,num_rois,nb_classes = 21):

    pooling_regions = 7

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers,input_rois])

    out = classifier_layers(out_roi_pool)
    out = TimeDistributed(Flatten(),name='td_flatten')(out)
    out_class = TimeDistributed(Dense(nb_classes, activation='softmax'), name='dense_class_{}'.format(nb_classes))(out)
    out_regr = TimeDistributed(Dense(4, activation='linear'), name='dense_regr')(out)


    return [out_class,out_regr] 
開發者ID:small-yellow-duck,項目名稱:keras-frcnn,代碼行數:15,代碼來源:resnet.py

示例12: classifier

# 需要導入模塊: from keras_frcnn import RoiPoolingConv [as 別名]
# 或者: from keras_frcnn.RoiPoolingConv import RoiPoolingConv [as 別名]
def classifier(base_layers, input_rois, num_rois, nb_classes,trainable=True):
    """
    The final classifier
    NOTE:
    The Roipooling layer uses tensorflow's bilinear interpolation
    """
    channel_axis = 4 # additional TD layer
    pooling_regions = 17 # tensorflow implementation
    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois,trainable=trainable)([base_layers, input_rois])

    # mixed 8: 8 x 8 x 1280
    branch3x3 = conv2d_bn_td(out_roi_pool, 192, 1, 1,trainable=trainable)
    branch3x3 = conv2d_bn_td(branch3x3, 320, 3, 3,
                          strides=(2, 2), padding='valid',trainable=trainable)

    branch7x7x3 = conv2d_bn_td(out_roi_pool, 192, 1, 1,trainable=trainable)
    branch7x7x3 = conv2d_bn_td(branch7x7x3, 192, 1, 7,trainable=trainable)
    branch7x7x3 = conv2d_bn_td(branch7x7x3, 192, 7, 1,trainable=trainable)
    branch7x7x3 = conv2d_bn_td(
        branch7x7x3, 192, 3, 3, strides=(2, 2), padding='valid',trainable=trainable)

    branch_pool = TimeDistributed(MaxPooling2D((3, 3), strides=(2, 2),trainable=trainable),trainable=trainable)(out_roi_pool)
    x = layers.concatenate(
        [branch3x3, branch7x7x3, branch_pool], axis=channel_axis, name='mixed8')

    # mixed 9,10: 8 x 8 x 2048
    for i in range(2):
        branch1x1 = conv2d_bn_td(x, 320, 1, 1,trainable=trainable)

        branch3x3 = conv2d_bn_td(x, 384, 1, 1,trainable=trainable)
        branch3x3_1 = conv2d_bn_td(branch3x3, 384, 1, 3,trainable=trainable)
        branch3x3_2 = conv2d_bn_td(branch3x3, 384, 3, 1,trainable=trainable)
        branch3x3 = layers.concatenate(
            [branch3x3_1, branch3x3_2], axis=channel_axis, name='mixed9_' + str(i))

        branch3x3dbl = conv2d_bn_td(x, 448, 1, 1,trainable=trainable)
        branch3x3dbl = conv2d_bn_td(branch3x3dbl, 384, 3, 3,trainable=trainable)
        branch3x3dbl_1 = conv2d_bn_td(branch3x3dbl, 384, 1, 3,trainable=trainable)
        branch3x3dbl_2 = conv2d_bn_td(branch3x3dbl, 384, 3, 1,trainable=trainable)
        branch3x3dbl = layers.concatenate(
            [branch3x3dbl_1, branch3x3dbl_2], axis=channel_axis)

        branch_pool = TimeDistributed(AveragePooling2D(
            (3, 3), strides=(1, 1), padding='same',trainable=trainable),trainable=trainable)(x)
        branch_pool = conv2d_bn_td(branch_pool, 192, 1, 1,trainable=trainable)
        x = layers.concatenate(
            [branch1x1, branch3x3, branch3x3dbl, branch_pool],
            axis=channel_axis,
            name='mixed' + str(9 + i))

    out = TimeDistributed(GlobalAveragePooling2D(trainable=trainable),name='global_avg_pooling',trainable=trainable)(x)
    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero',trainable=trainable), name='dense_class_{}'.format(nb_classes),trainable=trainable)(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero',trainable=trainable), name='dense_regress_{}'.format(nb_classes),trainable=trainable)(out)

    return [out_class, out_regr] 
開發者ID:Abhijit-2592,項目名稱:Keras_object_detection,代碼行數:58,代碼來源:nn_arch_inceptionv3.py


注:本文中的keras_frcnn.RoiPoolingConv.RoiPoolingConv方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。