當前位置: 首頁>>代碼示例>>Python>>正文


Python visualize_util.plot方法代碼示例

本文整理匯總了Python中keras.utils.visualize_util.plot方法的典型用法代碼示例。如果您正苦於以下問題:Python visualize_util.plot方法的具體用法?Python visualize_util.plot怎麽用?Python visualize_util.plot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.utils.visualize_util的用法示例。


在下文中一共展示了visualize_util.plot方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _plot_graph

# 需要導入模塊: from keras.utils import visualize_util [as 別名]
# 或者: from keras.utils.visualize_util import plot [as 別名]
def _plot_graph(self):
        from keras.utils import visualize_util
        graph_png = '{}/graph-plot.png'.format(self.model_folder)
        visualize_util.plot(self.model,
                            to_file=graph_png,
                            show_shapes=True,
                            show_layer_names=True) 
開發者ID:XuesongYang,項目名稱:end2end_dialog,代碼行數:9,代碼來源:AgentActClassifyingModel.py

示例2: plot

# 需要導入模塊: from keras.utils import visualize_util [as 別名]
# 或者: from keras.utils.visualize_util import plot [as 別名]
def plot(self, fn, train_fn):
        """
        Plot this model to an image file
        Train file is needed as it influences the dimentions of the RNN
        """
        from keras.utils.visualize_util import plot
        X, Y = self.load_dataset(train_fn)
        self.model_fn()
        plot(self.model, to_file = fn) 
開發者ID:gabrielStanovsky,項目名稱:supervised-oie,代碼行數:11,代碼來源:confidence_model.py

示例3: build

# 需要導入模塊: from keras.utils import visualize_util [as 別名]
# 或者: from keras.utils.visualize_util import plot [as 別名]
def build(self):
        enc_size = self.size_of_env_observation()
        argument_size = IntegerArguments.size_of_arguments
        input_enc = InputLayer(batch_input_shape=(self.batch_size, enc_size), name='input_enc')
        input_arg = InputLayer(batch_input_shape=(self.batch_size, argument_size), name='input_arg')
        input_prg = Embedding(input_dim=PROGRAM_VEC_SIZE, output_dim=PROGRAM_KEY_VEC_SIZE, input_length=1,
                              batch_input_shape=(self.batch_size, 1))

        f_enc = Sequential(name='f_enc')
        f_enc.add(Merge([input_enc, input_arg], mode='concat'))
        f_enc.add(MaxoutDense(128, nb_feature=4))
        self.f_enc = f_enc

        program_embedding = Sequential(name='program_embedding')
        program_embedding.add(input_prg)

        f_enc_convert = Sequential(name='f_enc_convert')
        f_enc_convert.add(f_enc)
        f_enc_convert.add(RepeatVector(1))

        f_lstm = Sequential(name='f_lstm')
        f_lstm.add(Merge([f_enc_convert, program_embedding], mode='concat'))
        f_lstm.add(LSTM(256, return_sequences=False, stateful=True, W_regularizer=l2(0.0000001)))
        f_lstm.add(Activation('relu', name='relu_lstm_1'))
        f_lstm.add(RepeatVector(1))
        f_lstm.add(LSTM(256, return_sequences=False, stateful=True, W_regularizer=l2(0.0000001)))
        f_lstm.add(Activation('relu', name='relu_lstm_2'))
        # plot(f_lstm, to_file='f_lstm.png', show_shapes=True)

        f_end = Sequential(name='f_end')
        f_end.add(f_lstm)
        f_end.add(Dense(1, W_regularizer=l2(0.001)))
        f_end.add(Activation('sigmoid', name='sigmoid_end'))

        f_prog = Sequential(name='f_prog')
        f_prog.add(f_lstm)
        f_prog.add(Dense(PROGRAM_KEY_VEC_SIZE, activation="relu"))
        f_prog.add(Dense(PROGRAM_VEC_SIZE, W_regularizer=l2(0.0001)))
        f_prog.add(Activation('softmax', name='softmax_prog'))
        # plot(f_prog, to_file='f_prog.png', show_shapes=True)

        f_args = []
        for ai in range(1, IntegerArguments.max_arg_num+1):
            f_arg = Sequential(name='f_arg%s' % ai)
            f_arg.add(f_lstm)
            f_arg.add(Dense(IntegerArguments.depth, W_regularizer=l2(0.0001)))
            f_arg.add(Activation('softmax', name='softmax_arg%s' % ai))
            f_args.append(f_arg)
        # plot(f_arg, to_file='f_arg.png', show_shapes=True)

        self.model = Model([input_enc.input, input_arg.input, input_prg.input],
                           [f_end.output, f_prog.output] + [fa.output for fa in f_args],
                           name="npi")
        self.compile_model()
        plot(self.model, to_file='model.png', show_shapes=True) 
開發者ID:mokemokechicken,項目名稱:keras_npi,代碼行數:57,代碼來源:model.py

示例4: train

# 需要導入模塊: from keras.utils import visualize_util [as 別名]
# 或者: from keras.utils.visualize_util import plot [as 別名]
def train(self):
        print('Training model ...')
        # load params
        self.window_size = self.train_data.window_size
        self.userTagIntent_vocab_size = self.train_data.userTagIntent_vocab_size
        self.agentAct_vocab_size = self.train_data.agentAct_vocab_size
        self.id2agentAct = self.train_data.id2agentAct
        other_npz = '{}/other_vars.npz'.format(self.model_folder)
        train_vars = {'window_size': self.window_size,
                      'userTagIntent_vocab_size': self.userTagIntent_vocab_size,
                      'agentAct_vocab_size': self.agentAct_vocab_size,
                      'id2agentAct': self.id2agentAct}
        np.savez_compressed(other_npz, **train_vars)
        self.params['window_size'] = self.window_size
        self.params['userTagIntent_vocab_size'] = self.userTagIntent_vocab_size
        self.params['agentAct_vocab_size'] = self.agentAct_vocab_size
        print_params(self.params)
        # build model graph, save graph and plot graph
        self._build()
        self._plot_graph()
        graph_yaml = '{}/graph-arch.yaml'.format(self.model_folder)
        with open(graph_yaml, 'w') as fyaml:
            fyaml.write(self.model.to_yaml())
        # load train data
        X_train = self.train_data.userTagIntent_vecBin
        y_train = self.train_data.agentAct_vecBin
        train_utter_txt = self.train_data.userUtter_txt
        train_act_txt = self.train_data.agentAct_txt
        train_fname = '{}/train.target'.format(self.model_folder)
        writeUtterActTxt(train_utter_txt, train_act_txt, train_fname)
        # load dev data
        X_dev = self.dev_data.userTagIntent_vecBin
        y_dev = self.dev_data.agentAct_vecBin
        dev_utter_txt = self.dev_data.userUtter_txt
        dev_act_txt = self.dev_data.agentAct_txt
        dev_fname = '{}/dev.target'.format(self.model_folder)
        writeUtterActTxt(dev_utter_txt, dev_act_txt, dev_fname)
        for ep in xrange(self.epoch_nb):
            print('<Epoch {}>'.format(ep))
            self.model.fit(x=X_train, y=y_train, batch_size=self.batch_size, nb_epoch=1, verbose=2)
            act_probs = self.model.predict(X_dev)
            precision, recall, fscore, accuracy_frame, threshold = eval_intentPredict(act_probs, y_dev)
            print('ep={}, precision={:.4f}, recall={:.4f}, fscore={:.4f}, accuracy_frame={:.4f}, threshold={:.4f}'.format(ep, precision, recall, fscore, accuracy_frame, threshold))
            dev_pred_txt = getActPred(act_probs, threshold, self.id2agentAct)
            dev_results_fname = '{}/dev_results/dev_ep={}.pred'.format(self.model_folder, ep)
            writeUtterActTxt(dev_utter_txt, dev_pred_txt, dev_results_fname)
            print('Write dev results: {}'.format(dev_results_fname))
            weights_fname = '{}/weights/ep={}_f1={:.4f}_frameAcc={:.4f}_th={:.4f}.h5'.format(self.model_folder, ep, fscore, accuracy_frame, threshold)
            print('Saving Model: {}'.format(weights_fname))
            self.model.save_weights(weights_fname, overwrite=True) 
開發者ID:XuesongYang,項目名稱:end2end_dialog,代碼行數:52,代碼來源:AgentActClassifyingModel.py


注:本文中的keras.utils.visualize_util.plot方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。