當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.plot_model方法代碼示例

本文整理匯總了Python中keras.utils.plot_model方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.plot_model方法的具體用法?Python utils.plot_model怎麽用?Python utils.plot_model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.utils的用法示例。


在下文中一共展示了utils.plot_model方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_model

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def get_model():
    model = models.Sequential()
    model.add(layers.Conv2D(16,(3,3),activation='relu',input_shape=(135,240,3),padding = 'same'))
    model.add(layers.MaxPooling2D((2,2)))
    model.add(layers.Conv2D(32,(3,3),activation='relu',padding = 'same'))
    model.add(layers.MaxPooling2D((2,2)))
    model.add(layers.Conv2D(64,(3,3),activation='relu',padding = 'same'))
    model.add(layers.MaxPooling2D((2,2)))
    model.add(layers.Conv2D(64,(3,3),activation='relu',padding = 'same'))
    model.add(layers.MaxPooling2D((2,2)))
    model.add(layers.Conv2D(128,(3,3),activation='relu',padding = 'same'))
    model.add(layers.MaxPooling2D((2,2)))
    model.add(layers.Flatten())
    model.add(layers.Dropout(0.5))
    model.add(layers.Dense(128,activation="relu"))
    model.add(layers.Dropout(0.5))
    model.add(layers.Dense(27,activation="softmax"))

    return model

#model.summary()
#plot_model(model, to_file='model.png') 
開發者ID:lyffly,項目名稱:AI_for_Wechat_tiaoyitiao,代碼行數:24,代碼來源:mymodel.py

示例2: construct_model

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def construct_model(classe_nums):
    model = Sequential()

    model.add(
        Conv1D(filters=256, kernel_size=3, strides=1, activation='relu', input_shape=(99, 40), name='block1_conv1'))
    model.add(MaxPool1D(pool_size=2, name='block1_pool1'))
    model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1))

    model.add(Conv1D(filters=256, kernel_size=3, strides=1, activation='relu', name='block1_conv2'))
    model.add(MaxPool1D(pool_size=2, name='block1_pool2'))

    model.add(Flatten(name='block1_flat1'))
    model.add(Dropout(0.5, name='block1_drop1'))

    model.add(Dense(512, activation='relu', name='block2_dense2'))
    model.add(MaxoutDense(512, nb_feature=4, name="block2_maxout2"))
    model.add(Dropout(0.5, name='block2_drop2'))

    model.add(Dense(512, activation='relu', name='block2_dense3', kernel_regularizer=l2(1e-4)))
    model.add(MaxoutDense(512, nb_feature=4, name="block2_maxout3"))
    model.add(Dense(classe_nums, activation='softmax', name="predict"))

    # plot_model(model, to_file='model_struct.png', show_shapes=True, show_layer_names=False)

    model.summary() 
開發者ID:houzhengzhang,項目名稱:speaker_recognition,代碼行數:27,代碼來源:plot_model_struct.py

示例3: save_model

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def save_model(self, folder_path, file_name = None):

        if file_name is None:
            file_name = self.RECOMMENDER_NAME

        self._print("Saving model in file '{}'".format(folder_path + file_name))

        data_dict_to_save = {
                              'learning_rate':self.learning_rate,
                              'num_epochs':self.num_epochs,
                              'num_negatives':self.num_negatives,
                              'dataset_name':self.dataset_name,
                              'number_model':self.number_model,
                              'plot_model':self.plot_model,
                              'current_epoch':self.current_epoch,
                              'verbose':self.verbose,
                              }

        dataIO = DataIO(folder_path=folder_path)
        dataIO.save_data(file_name=file_name, data_dict_to_save = data_dict_to_save)

        self.model.save(folder_path + file_name + "_keras_model.h5")

        self._print("Saving complete") 
開發者ID:MaurizioFD,項目名稱:RecSys2019_DeepLearning_Evaluation,代碼行數:26,代碼來源:CoupledCFWrapper.py

示例4: creat_model

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def creat_model(self):
        input_data = Input(shape=[self.AUDIO_LENGTH, self.FEATURE_LENGTH, 1], name='Input')
        layer1 = LSTM(units=256 , activation='relu' , return_sequences=True , use_bias=True)


        dense4 = Dense(units=self.MS_OUTPUT_SIZE, use_bias=True, kernel_initializer='he_normal')(dense2)
        y_pred = Activation(activation='softmax', name='activation')(dense4)
        model_data = Model(inputs=input_data, outputs=y_pred)

        # model_data.summary()
        # plot_model(model_data , '/home/zhangwei/01.png')

        labels = Input(shape=[self.label_max_string_length], name='labels', dtype='float32')
        input_length = Input(shape=[1], name='input_length', dtype='int64')
        label_length = Input(shape=[1], name='label_length', dtype='int64')
        loss_out = Lambda(self.ctc_lambda_func, output_shape=[1, ], name='ctc')([y_pred, labels, input_length, label_length])
        model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)

        # model.summary()

        sgd = SGD(lr=0.0005, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)
        adam = Adam(lr=0.01, epsilon=1e-6)
        rms = RMSprop(lr=0.01 , rho=0.9 , epsilon=1e-6)

        model.compile(optimizer=rms, loss={'ctc': lambda y_true, y_pred: y_pred})

        print('==========================模型創建成功=================================')
        return model, model_data
        pass 
開發者ID:zw76859420,項目名稱:ASR_WORD,代碼行數:31,代碼來源:speech_model_02.py

示例5: train

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def train(self, x_train, y_train, x_valid, y_valid, callbacks=None):
        """ 
        Train the instance self.model 
        """
        if 'bert' not in self.model_config.model_type.lower():
            self.model.summary()
            #print("self.model_config.use_crf:", self.model_config.use_crf)

            if self.model_config.use_crf:
                self.model.compile(loss=self.model.crf.loss,
                               optimizer='adam')
            else:
                self.model.compile(loss='categorical_crossentropy',
                               optimizer='adam')
                               #optimizer=Adam(lr=self.training_config.learning_rate))
            # uncomment to plot graph
            #plot_model(self.model, 
            #    to_file='data/models/sequenceLabelling/'+self.model_config.model_name+'_'+self.model_config.model_type+'.png')
            self.model = self.train_model(self.model, x_train, y_train, x_valid, y_valid, 
                                                  self.training_config.max_epoch, callbacks=callbacks)
        else:
            # for BERT architectures, directly call the model trainer
            if self.training_config.early_stop:
                self.model.train(x_train,y_train)
            else:
                self.model.train(np.concatenate([x_train,x_valid]), np.concatenate([y_train,y_valid])) 
開發者ID:kermitt2,項目名稱:delft,代碼行數:28,代碼來源:trainer.py

示例6: train

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def train(self, x_train, y_train, vocab_init=None, callbacks=None):
        self.model = getModel(self.model_config, self.training_config)

        # bert models
        if self.model_config.model_type.find("bert") != -1:     
            self.model.processor = BERT_classifier_processor(labels=self.model_config.list_classes, x_train=x_train, y_train=y_train)
            self.model.train()
            return

        # create validation set in case we don't use k-folds
        xtr, val_x, y, val_y = train_test_split(x_train, y_train, test_size=0.1)

        training_generator = DataGenerator(xtr, y, batch_size=self.training_config.batch_size, 
            maxlen=self.model_config.maxlen, list_classes=self.model_config.list_classes, 
            embeddings=self.embeddings, shuffle=True)
        validation_generator = DataGenerator(val_x, None, batch_size=self.training_config.batch_size, 
            maxlen=self.model_config.maxlen, list_classes=self.model_config.list_classes, 
            embeddings=self.embeddings, shuffle=False)
        
        # uncomment to plot graph
        #plot_model(self.model, 
        #    to_file='data/models/textClassification/'+self.model_config.model_name+'_'+self.model_config.model_type+'.png')
        self.model, best_roc_auc = train_model(self.model, self.model_config.list_classes, self.training_config.batch_size, 
            self.training_config.max_epoch, self.training_config.use_roc_auc, self.training_config.class_weights, 
            training_generator, validation_generator, val_y, use_ELMo=self.embeddings.use_ELMo, 
            use_BERT=self.embeddings.use_BERT, multiprocessing=self.training_config.multiprocessing, callbacks=callbacks)
        if self.embeddings.use_ELMo:
            self.embeddings.clean_ELMo_cache()
        if self.embeddings.use_BERT:
            self.embeddings.clean_BERT_cache() 
開發者ID:kermitt2,項目名稱:delft,代碼行數:32,代碼來源:wrapper.py

示例7: get_model

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def get_model():
    # # 加載網絡結構
    # with open('./models/text_lstm.yaml', 'r') as yaml_file:
    #     loaded_model_yaml = yaml_file.read()
    # model = model_from_yaml(loaded_model_yaml)
    # # 加載模型權重
    # model.load_weights("./models/text_lstm.h5")
    # print("model Loaded")
    # model.compile(loss='binary_crossentropy',optimizer='adam', metrics=['accuracy'])
                  
    # utils.plot_model(model,to_file='./models/text_lstm_model.png')

    model = load_model("./models/text_lstm_full.h5")

    return model 
開發者ID:jarvisqi,項目名稱:deep_learning,代碼行數:17,代碼來源:textAnalysis.py

示例8: build_model

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def build_model(x_train,y_train):
    """
    構建網絡,訓練模型
    """

    print("build network")
    usr_input = Input(shape=(3,))
    usr_x = Embedding(x_train[0].shape[0] + 1, 256, input_length=3)(usr_input)
    print("user_embedding_x:", usr_x.shape)
    usr_x = Flatten()(usr_x)
    usr_x = Dense(128, activation='relu')(usr_x)
    print("user_dense_x:", usr_x.shape)

    mov_input = Input(shape=(3,))
    mov_x = Embedding(x_train[0].shape[0] + 1, 256, input_length=3)(mov_input)
    print("movie_embedding_x:", mov_x.shape)
    mov_x = Flatten()(mov_x)
    mov_x = Dense(128, activation='relu')(mov_x)
    print("movie_dense_x:", mov_x.shape)

    concat_tensor = Concatenate()([usr_x, mov_x])
    print("concat_tensor:", concat_tensor.shape)
    x_tensor = Dense(64, activation='relu')(concat_tensor)
    x_tensor = Dropout(0.5)(x_tensor)
    x_tensor = Dense(32, activation='relu')(x_tensor)
    x_tensor = Dropout(0.3)(x_tensor)
    x_output = Dense(1, activation='linear')(x_tensor)

    print("Model:", usr_input.shape, mov_input.shape, "output_x:", x_output.shape)
    model = Model([usr_input, mov_input], x_output)
    sgd = Adam(lr=0.002)
    model.compile(optimizer=sgd, loss='mse', metrics=['accuracy'])
    model_png='./models/dnn_recomm_model.png'
    # 顯示網絡結構 
    if not os.path.exists(model_png):
        utils.plot_model(model,to_file='./models/dnn_recomm_model.png')
    callTB = callbacks.TensorBoard(log_dir='./logs/dnn_merge-1')
    print("training model")
    best_model = callbacks.ModelCheckpoint("./models/dnn_recommend_full.h5", monitor='val_loss', verbose=0, save_best_only=True)
    model.fit(x_train, y_train, epochs=64, batch_size=512,callbacks=[callTB, best_model], validation_split=0.2) 
開發者ID:jarvisqi,項目名稱:deep_learning,代碼行數:42,代碼來源:recommend_dnn.py

示例9: save_model

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def save_model(self, folder_path, file_name = None):

        if file_name is None:
            file_name = self.RECOMMENDER_NAME

        self._print("Saving model in file '{}'".format(folder_path + file_name))


        data_dict_to_save = {
                              'learning_rate':self.learning_rate,
                              'num_epochs':self.num_epochs,
                              'num_negatives':self.num_negatives,
                              'dataset_name':self.dataset_name,
                              'number_model':self.number_model,
                              'plot_model':self.plot_model,
                              'current_epoch':self.current_epoch,
                              'verbose':self.verbose,
                              }


        dataIO = DataIO(folder_path=folder_path)
        dataIO.save_data(file_name=file_name, data_dict_to_save = data_dict_to_save)

        self.model.save(folder_path + file_name + "_keras_model.h5")

        self._print("Saving complete") 
開發者ID:MaurizioFD,項目名稱:RecSys2019_DeepLearning_Evaluation,代碼行數:28,代碼來源:DeepCFWrapper.py

示例10: creat_model

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def creat_model(self):
        input_data = Input(shape=[self.AUDIO_LENGTH, self.FEATURE_LENGTH, 1], name='Input')
        conv1 = Conv2D(filters=32, kernel_size=[3, 3], padding='same', activation='relu', use_bias=True,kernel_initializer='TruncatedNormal')(input_data)
        conv1 = BatchNormalization(epsilon=0.0002)(conv1)
        conv2 = Conv2D(filters=32, kernel_size=[3, 3], padding='same', activation='relu', use_bias=True,kernel_initializer='TruncatedNormal')(conv1)
        conv2 = BatchNormalization(epsilon=0.0002)(conv2)
        maxpool1 = MaxPooling2D(pool_size=[2, 2], strides=None, padding='valid')(conv2)

        conv3 = Conv2D(filters=64, kernel_size=[3, 3], padding='same', activation='relu', use_bias=True,kernel_initializer='TruncatedNormal')(maxpool1)
        conv3 = BatchNormalization(epsilon=0.0002)(conv3)
        conv4 = Conv2D(filters=64, kernel_size=[3, 3], padding='same', activation='relu', use_bias=True,kernel_initializer='TruncatedNormal')(conv3)
        conv4 = BatchNormalization(epsilon=0.0002)(conv4)
        maxpool2 = MaxPooling2D(pool_size=[2, 2], strides=None, padding='valid')(conv4)

        conv5 = Conv2D(filters=128, kernel_size=[3, 3], padding='same', activation='relu', use_bias=True,kernel_initializer='TruncatedNormal')(maxpool2)
        conv5 = BatchNormalization(epsilon=0.0002)(conv5)
        conv6 = Conv2D(filters=128, kernel_size=[3, 3], padding='same', activation='relu', use_bias=True,kernel_initializer='TruncatedNormal')(conv5)
        conv6 = BatchNormalization(epsilon=0.0002)(conv6)
        maxpool3 = MaxPooling2D(pool_size=[2, 2], strides=None, padding='valid')(conv6)

        # conv7 = Conv2D(filters=128, kernel_size=[3, 3], padding='same', activation='relu', use_bias=True,kernel_initializer='he_normal')(maxpool3)
        # conv7 = BatchNormalization(epsilon=0.0002)(conv7)
        # conv8 = Conv2D(filters=128 , kernel_size=[3, 3], padding='same', activation='relu', use_bias=True , kernel_initializer='he_normal')(conv7)
        # conv8 = BatchNormalization(epsilon=0.0002)(conv8)
        # maxpool4 = MaxPooling2D(pool_size=[2, 2], strides=None, padding='valid')(conv8)

        reshape = Reshape([250, 3200])(maxpool3)
        dense2 = Dense(units=1024, activation='relu', use_bias=True, kernel_initializer='he_normal')(reshape)
        dense2 = BatchNormalization(epsilon=0.0002)(dense2)
        dense2 = Dropout(0.3)(dense2)

        dense3 = Dense(units=1024, activation='relu', use_bias=True, kernel_initializer='he_normal')(dense2)
        dense3 = BatchNormalization(epsilon=0.0002)(dense3)
        dense3 = Dropout(0.3)(dense3)

        dense4 = Dense(units=self.MS_OUTPUT_SIZE, use_bias=True, kernel_initializer='he_normal')(dense3)
        y_pred = Activation(activation='softmax', name='activation')(dense4)
        model_data = Model(inputs=input_data, outputs=y_pred)

        # model_data.summary()
        # plot_model(model_data , '/home/zhangwei/01.png')

        labels = Input(shape=[self.label_max_string_length], name='labels', dtype='float32')
        input_length = Input(shape=[1], name='input_length', dtype='int64')
        label_length = Input(shape=[1], name='label_length', dtype='int64')
        loss_out = Lambda(self.ctc_lambda_func, output_shape=[1, ], name='ctc')([y_pred, labels, input_length, label_length])
        model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)

        # model.summary()

        sgd = SGD(lr=0.0005, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)
        adam = Adam(lr=0.0005, epsilon=1e-6)

        model.compile(optimizer=adam, loss={'ctc': lambda y_true, y_pred: y_pred})

        print('==========================模型創建成功=================================')
        return model, model_data
        pass 
開發者ID:zw76859420,項目名稱:ASR_WORD,代碼行數:60,代碼來源:speech_model_01.py

示例11: fit

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def fit(self, learning_rate=0.001,
            epochs=30,
            n_negative_sample=4,
            dataset_name='Movielens1M',
            number_model=3,
            verbose=1,
            plot_model=True,
            temp_file_folder=None,
            **earlystopping_kwargs
            ):


        self.learning_rate = learning_rate
        self.num_epochs = epochs
        self.num_negatives = n_negative_sample
        self.dataset_name = dataset_name
        self.number_model = number_model
        self.plot_model = plot_model
        self.verbose = verbose
        self.current_epoch = 0

        self.temp_file_folder = self._get_unique_temp_folder(input_temp_file_folder=temp_file_folder)

        print("{}: Init model...".format(self.RECOMMENDER_NAME))

        # load model
        self.model = self._get_model(self.n_users, self.n_items, self.dataset_name, self.number_model)

        # compile model
        self.model.compile(optimizer=Adam(lr=self.learning_rate),loss='binary_crossentropy',metrics=['accuracy', 'mae'])

        if self.plot_model:
            utils.plot_model(self.model, show_shapes=True, to_file='CoupledCF_{}_model{}.png'.format(self.dataset_name, self.number_model))

        if self.verbose > 1:
            self.model.summary()

        print("{}: Init model... done!".format(self.RECOMMENDER_NAME))

        print("{}: Training...".format(self.RECOMMENDER_NAME))

        self._update_best_model()

        self._train_with_early_stopping(self.num_epochs,
                                        algorithm_name = self.RECOMMENDER_NAME,
                                        **earlystopping_kwargs)

        self.load_model(self.temp_file_folder, file_name="_best_model")

        print("{}: Tranining complete".format(self.RECOMMENDER_NAME))
        self._clean_temp_folder(temp_file_folder=self.temp_file_folder) 
開發者ID:MaurizioFD,項目名稱:RecSys2019_DeepLearning_Evaluation,代碼行數:53,代碼來源:DeepCFWrapper.py

示例12: fit

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def fit(self, learning_rate=0.001,
            epochs=30,
            n_negative_sample=4,
            dataset_name='Movielens1M',
            number_model=0,
            verbose=1,
            plot_model=True,
            temp_file_folder=None,
            **earlystopping_kwargs
            ):


        self.learning_rate = learning_rate
        self.num_epochs = epochs
        self.num_negatives = n_negative_sample
        self.dataset_name = dataset_name
        self.number_model = number_model
        self.plot_model = plot_model
        self.verbose = verbose
        self.current_epoch = 0

        self.temp_file_folder = self._get_unique_temp_folder(input_temp_file_folder=temp_file_folder)

        print("{}: Init model for {} ...".format(self.RECOMMENDER_NAME, self.dataset_name))

        # load model
        self.model = self._get_model(self.n_users, self.n_items, self.dataset_name, self.number_model)

        # compile model
        self.model.compile(optimizer=Adam(lr=self.learning_rate),
                           loss='binary_crossentropy',
                           metrics=['accuracy', 'mae'])

        if self.plot_model:
            utils.plot_model(self.model,
                             show_shapes=True,
                             to_file='CoupledCF_{}_model{}.png'.format(self.dataset_name, self.number_model))

        if self.verbose > 1:
            self.model.summary()

        print("{}: Init model... done!".format(self.RECOMMENDER_NAME))

        print("{}: Training...".format(self.RECOMMENDER_NAME))

        self._update_best_model()

        self._train_with_early_stopping(self.num_epochs,
                                        algorithm_name = self.RECOMMENDER_NAME,
                                        **earlystopping_kwargs)

        self.load_model(self.temp_file_folder, file_name="_best_model")

        print("{}: Tranining complete".format(self.RECOMMENDER_NAME))
        self._clean_temp_folder(temp_file_folder=self.temp_file_folder) 
開發者ID:MaurizioFD,項目名稱:RecSys2019_DeepLearning_Evaluation,代碼行數:57,代碼來源:CoupledCFWrapper.py

示例13: __init__

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def __init__(self):
        optimizer = Adam(0.0004, 0.5, clipnorm = 1)
        opt_small = Adam(0.0002, 0.5, clipnorm = 1) 
        
        inputs_real = [position_input, img_ident_input]
        inputs_fake = [position_input, latent_input]

        #main pieces
        if (not os.path.isfile('generator.h5')):
            img_ident_layer = Dense(LATENT_SPACE, activation='tanh')(img_ident_input) 
            self.ident = Model(img_ident_input, img_ident_layer, name = 'IDENT')
            #plot_model(self.ident, to_file='ident.png', show_shapes=True)
            
            self.generator = self.build_generator()
            #plot_model(self.generator, to_file='generator.png', show_shapes=True)
            
            self.discriminator = self.build_discriminator()
            #plot_model(self.discriminator, to_file='discriminator.png', show_shapes=True)
        else:
            self.discriminator = load_model('discriminator.h5')
            self.generator = load_model('generator.h5')
            self.ident = load_model('ident.h5')
        
        
        
        self.ident.trainable = True
        self.generator.trainable = True
        self.generator.compile(loss='mse', optimizer=optimizer)
        self.discriminator.trainable = False
        
        self.generator_real_t = self.generator([position_input, self.ident([img_ident_input])])[0] #Train ident -> pixel as normal model
        self.generator_real = Model(inputs_real, self.generator_real_t, name = 'generator_real')
        self.generator_real.compile(loss='mse', optimizer=optimizer)
        #plot_model(self.generator_real, to_file='generator_real.png', show_shapes=True)

        self.generator_fake_t = self.discriminator(self.generator(inputs_fake)[1])   #Train noise -> 1 on discriminator
        self.generator_fake = Model(inputs_fake, self.generator_fake_t, name = 'generator_fake')
        self.generator_fake.compile(loss='binary_crossentropy', optimizer=opt_small)
        #plot_model(self.generator_fake, to_file='generator_fake.png', show_shapes=True)
        
        
        
        
        self.ident.trainable = False
        self.generator.trainable = False
        self.discriminator.trainable = True

        self.discriminator_real_t = self.discriminator(self.generator([position_input, self.ident([img_ident_input])])[1])   #Train discriminator assign ident -> 1
        self.discriminator_real = Model(inputs_real, self.discriminator_real_t, name = 'discriminator_real')
        self.discriminator_real.compile(loss='binary_crossentropy', optimizer=opt_small)
        #plot_model(self.discriminator_real, to_file='discriminator_real.png', show_shapes=True)

        
        self.discriminator_fake_t = self.discriminator(self.generator(inputs_fake)[1])   #Train discriminator assign noise -> 0
        self.discriminator_fake = Model(inputs_fake, self.discriminator_fake_t, name = 'discriminator_fake')
        self.discriminator_fake.compile(loss='binary_crossentropy', optimizer=opt_small)
        #plot_model(self.discriminator_fake, to_file='discriminator_fake.png', show_shapes=True)
        

    # Do not use Batch Normalization anywhere, it will be harmful for discriminator ability 
    # to distinguish good and bad samples, and as a result it will break the generator 
開發者ID:volotat,項目名稱:ConGAN,代碼行數:63,代碼來源:ConGAN.py

示例14: main

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def main(args):
    print('Loading data...')
    (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
    print(len(x_train), 'train sequences')
    print(len(x_test), 'test sequences')

    print("Pad sequences (samples x time)")
    x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
    x_test = sequence.pad_sequences(x_test, maxlen=maxlen)

    y_train = np.array(y_train)
    y_test = np.array(y_test)

    print('x_train shape:', x_train.shape)
    print('x_test shape:', x_test.shape)

    if os.path.exists('blstm.h5'):
        model = load_model('blstm.h5')
    else:
        model = Sequential()
        model.add(Embedding(max_features, 128, input_length=maxlen))
        model.add(Bidirectional(LSTM(64)))
        model.add(Dropout(0.5))
        model.add(Dense(1, activation='sigmoid'))

        # try using different optimizers and different optimizer configs
        model.compile('adam', 'binary_crossentropy', metrics=['accuracy'])

        print('Train...')
        model.fit(x_train, y_train,
                  batch_size=batch_size,
                  epochs=4,
                  validation_data=[x_test, y_test], verbose=2)

        model.save('blstm.h5')

    # plot_model(model)
    pred_y = model.predict(x_test)

    plt.figure()
    plt.plot(y_test, 'g')
    plt.plot(pred_y, 'r--')
    plt.show() 
開發者ID:jsonbruce,項目名稱:MTSAnomalyDetection,代碼行數:45,代碼來源:imdb_bidirectional_lstm.py


注:本文中的keras.utils.plot_model方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。