本文整理匯總了Python中keras.utils.plot_model方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.plot_model方法的具體用法?Python utils.plot_model怎麽用?Python utils.plot_model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.utils
的用法示例。
在下文中一共展示了utils.plot_model方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_model
# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def get_model():
model = models.Sequential()
model.add(layers.Conv2D(16,(3,3),activation='relu',input_shape=(135,240,3),padding = 'same'))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Conv2D(32,(3,3),activation='relu',padding = 'same'))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Conv2D(64,(3,3),activation='relu',padding = 'same'))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Conv2D(64,(3,3),activation='relu',padding = 'same'))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Conv2D(128,(3,3),activation='relu',padding = 'same'))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Flatten())
model.add(layers.Dropout(0.5))
model.add(layers.Dense(128,activation="relu"))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(27,activation="softmax"))
return model
#model.summary()
#plot_model(model, to_file='model.png')
示例2: construct_model
# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def construct_model(classe_nums):
model = Sequential()
model.add(
Conv1D(filters=256, kernel_size=3, strides=1, activation='relu', input_shape=(99, 40), name='block1_conv1'))
model.add(MaxPool1D(pool_size=2, name='block1_pool1'))
model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1))
model.add(Conv1D(filters=256, kernel_size=3, strides=1, activation='relu', name='block1_conv2'))
model.add(MaxPool1D(pool_size=2, name='block1_pool2'))
model.add(Flatten(name='block1_flat1'))
model.add(Dropout(0.5, name='block1_drop1'))
model.add(Dense(512, activation='relu', name='block2_dense2'))
model.add(MaxoutDense(512, nb_feature=4, name="block2_maxout2"))
model.add(Dropout(0.5, name='block2_drop2'))
model.add(Dense(512, activation='relu', name='block2_dense3', kernel_regularizer=l2(1e-4)))
model.add(MaxoutDense(512, nb_feature=4, name="block2_maxout3"))
model.add(Dense(classe_nums, activation='softmax', name="predict"))
# plot_model(model, to_file='model_struct.png', show_shapes=True, show_layer_names=False)
model.summary()
示例3: save_model
# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def save_model(self, folder_path, file_name = None):
if file_name is None:
file_name = self.RECOMMENDER_NAME
self._print("Saving model in file '{}'".format(folder_path + file_name))
data_dict_to_save = {
'learning_rate':self.learning_rate,
'num_epochs':self.num_epochs,
'num_negatives':self.num_negatives,
'dataset_name':self.dataset_name,
'number_model':self.number_model,
'plot_model':self.plot_model,
'current_epoch':self.current_epoch,
'verbose':self.verbose,
}
dataIO = DataIO(folder_path=folder_path)
dataIO.save_data(file_name=file_name, data_dict_to_save = data_dict_to_save)
self.model.save(folder_path + file_name + "_keras_model.h5")
self._print("Saving complete")
示例4: creat_model
# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def creat_model(self):
input_data = Input(shape=[self.AUDIO_LENGTH, self.FEATURE_LENGTH, 1], name='Input')
layer1 = LSTM(units=256 , activation='relu' , return_sequences=True , use_bias=True)
dense4 = Dense(units=self.MS_OUTPUT_SIZE, use_bias=True, kernel_initializer='he_normal')(dense2)
y_pred = Activation(activation='softmax', name='activation')(dense4)
model_data = Model(inputs=input_data, outputs=y_pred)
# model_data.summary()
# plot_model(model_data , '/home/zhangwei/01.png')
labels = Input(shape=[self.label_max_string_length], name='labels', dtype='float32')
input_length = Input(shape=[1], name='input_length', dtype='int64')
label_length = Input(shape=[1], name='label_length', dtype='int64')
loss_out = Lambda(self.ctc_lambda_func, output_shape=[1, ], name='ctc')([y_pred, labels, input_length, label_length])
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
# model.summary()
sgd = SGD(lr=0.0005, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)
adam = Adam(lr=0.01, epsilon=1e-6)
rms = RMSprop(lr=0.01 , rho=0.9 , epsilon=1e-6)
model.compile(optimizer=rms, loss={'ctc': lambda y_true, y_pred: y_pred})
print('==========================模型創建成功=================================')
return model, model_data
pass
示例5: train
# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def train(self, x_train, y_train, x_valid, y_valid, callbacks=None):
"""
Train the instance self.model
"""
if 'bert' not in self.model_config.model_type.lower():
self.model.summary()
#print("self.model_config.use_crf:", self.model_config.use_crf)
if self.model_config.use_crf:
self.model.compile(loss=self.model.crf.loss,
optimizer='adam')
else:
self.model.compile(loss='categorical_crossentropy',
optimizer='adam')
#optimizer=Adam(lr=self.training_config.learning_rate))
# uncomment to plot graph
#plot_model(self.model,
# to_file='data/models/sequenceLabelling/'+self.model_config.model_name+'_'+self.model_config.model_type+'.png')
self.model = self.train_model(self.model, x_train, y_train, x_valid, y_valid,
self.training_config.max_epoch, callbacks=callbacks)
else:
# for BERT architectures, directly call the model trainer
if self.training_config.early_stop:
self.model.train(x_train,y_train)
else:
self.model.train(np.concatenate([x_train,x_valid]), np.concatenate([y_train,y_valid]))
示例6: train
# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def train(self, x_train, y_train, vocab_init=None, callbacks=None):
self.model = getModel(self.model_config, self.training_config)
# bert models
if self.model_config.model_type.find("bert") != -1:
self.model.processor = BERT_classifier_processor(labels=self.model_config.list_classes, x_train=x_train, y_train=y_train)
self.model.train()
return
# create validation set in case we don't use k-folds
xtr, val_x, y, val_y = train_test_split(x_train, y_train, test_size=0.1)
training_generator = DataGenerator(xtr, y, batch_size=self.training_config.batch_size,
maxlen=self.model_config.maxlen, list_classes=self.model_config.list_classes,
embeddings=self.embeddings, shuffle=True)
validation_generator = DataGenerator(val_x, None, batch_size=self.training_config.batch_size,
maxlen=self.model_config.maxlen, list_classes=self.model_config.list_classes,
embeddings=self.embeddings, shuffle=False)
# uncomment to plot graph
#plot_model(self.model,
# to_file='data/models/textClassification/'+self.model_config.model_name+'_'+self.model_config.model_type+'.png')
self.model, best_roc_auc = train_model(self.model, self.model_config.list_classes, self.training_config.batch_size,
self.training_config.max_epoch, self.training_config.use_roc_auc, self.training_config.class_weights,
training_generator, validation_generator, val_y, use_ELMo=self.embeddings.use_ELMo,
use_BERT=self.embeddings.use_BERT, multiprocessing=self.training_config.multiprocessing, callbacks=callbacks)
if self.embeddings.use_ELMo:
self.embeddings.clean_ELMo_cache()
if self.embeddings.use_BERT:
self.embeddings.clean_BERT_cache()
示例7: get_model
# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def get_model():
# # 加載網絡結構
# with open('./models/text_lstm.yaml', 'r') as yaml_file:
# loaded_model_yaml = yaml_file.read()
# model = model_from_yaml(loaded_model_yaml)
# # 加載模型權重
# model.load_weights("./models/text_lstm.h5")
# print("model Loaded")
# model.compile(loss='binary_crossentropy',optimizer='adam', metrics=['accuracy'])
# utils.plot_model(model,to_file='./models/text_lstm_model.png')
model = load_model("./models/text_lstm_full.h5")
return model
示例8: build_model
# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def build_model(x_train,y_train):
"""
構建網絡,訓練模型
"""
print("build network")
usr_input = Input(shape=(3,))
usr_x = Embedding(x_train[0].shape[0] + 1, 256, input_length=3)(usr_input)
print("user_embedding_x:", usr_x.shape)
usr_x = Flatten()(usr_x)
usr_x = Dense(128, activation='relu')(usr_x)
print("user_dense_x:", usr_x.shape)
mov_input = Input(shape=(3,))
mov_x = Embedding(x_train[0].shape[0] + 1, 256, input_length=3)(mov_input)
print("movie_embedding_x:", mov_x.shape)
mov_x = Flatten()(mov_x)
mov_x = Dense(128, activation='relu')(mov_x)
print("movie_dense_x:", mov_x.shape)
concat_tensor = Concatenate()([usr_x, mov_x])
print("concat_tensor:", concat_tensor.shape)
x_tensor = Dense(64, activation='relu')(concat_tensor)
x_tensor = Dropout(0.5)(x_tensor)
x_tensor = Dense(32, activation='relu')(x_tensor)
x_tensor = Dropout(0.3)(x_tensor)
x_output = Dense(1, activation='linear')(x_tensor)
print("Model:", usr_input.shape, mov_input.shape, "output_x:", x_output.shape)
model = Model([usr_input, mov_input], x_output)
sgd = Adam(lr=0.002)
model.compile(optimizer=sgd, loss='mse', metrics=['accuracy'])
model_png='./models/dnn_recomm_model.png'
# 顯示網絡結構
if not os.path.exists(model_png):
utils.plot_model(model,to_file='./models/dnn_recomm_model.png')
callTB = callbacks.TensorBoard(log_dir='./logs/dnn_merge-1')
print("training model")
best_model = callbacks.ModelCheckpoint("./models/dnn_recommend_full.h5", monitor='val_loss', verbose=0, save_best_only=True)
model.fit(x_train, y_train, epochs=64, batch_size=512,callbacks=[callTB, best_model], validation_split=0.2)
示例9: save_model
# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def save_model(self, folder_path, file_name = None):
if file_name is None:
file_name = self.RECOMMENDER_NAME
self._print("Saving model in file '{}'".format(folder_path + file_name))
data_dict_to_save = {
'learning_rate':self.learning_rate,
'num_epochs':self.num_epochs,
'num_negatives':self.num_negatives,
'dataset_name':self.dataset_name,
'number_model':self.number_model,
'plot_model':self.plot_model,
'current_epoch':self.current_epoch,
'verbose':self.verbose,
}
dataIO = DataIO(folder_path=folder_path)
dataIO.save_data(file_name=file_name, data_dict_to_save = data_dict_to_save)
self.model.save(folder_path + file_name + "_keras_model.h5")
self._print("Saving complete")
示例10: creat_model
# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def creat_model(self):
input_data = Input(shape=[self.AUDIO_LENGTH, self.FEATURE_LENGTH, 1], name='Input')
conv1 = Conv2D(filters=32, kernel_size=[3, 3], padding='same', activation='relu', use_bias=True,kernel_initializer='TruncatedNormal')(input_data)
conv1 = BatchNormalization(epsilon=0.0002)(conv1)
conv2 = Conv2D(filters=32, kernel_size=[3, 3], padding='same', activation='relu', use_bias=True,kernel_initializer='TruncatedNormal')(conv1)
conv2 = BatchNormalization(epsilon=0.0002)(conv2)
maxpool1 = MaxPooling2D(pool_size=[2, 2], strides=None, padding='valid')(conv2)
conv3 = Conv2D(filters=64, kernel_size=[3, 3], padding='same', activation='relu', use_bias=True,kernel_initializer='TruncatedNormal')(maxpool1)
conv3 = BatchNormalization(epsilon=0.0002)(conv3)
conv4 = Conv2D(filters=64, kernel_size=[3, 3], padding='same', activation='relu', use_bias=True,kernel_initializer='TruncatedNormal')(conv3)
conv4 = BatchNormalization(epsilon=0.0002)(conv4)
maxpool2 = MaxPooling2D(pool_size=[2, 2], strides=None, padding='valid')(conv4)
conv5 = Conv2D(filters=128, kernel_size=[3, 3], padding='same', activation='relu', use_bias=True,kernel_initializer='TruncatedNormal')(maxpool2)
conv5 = BatchNormalization(epsilon=0.0002)(conv5)
conv6 = Conv2D(filters=128, kernel_size=[3, 3], padding='same', activation='relu', use_bias=True,kernel_initializer='TruncatedNormal')(conv5)
conv6 = BatchNormalization(epsilon=0.0002)(conv6)
maxpool3 = MaxPooling2D(pool_size=[2, 2], strides=None, padding='valid')(conv6)
# conv7 = Conv2D(filters=128, kernel_size=[3, 3], padding='same', activation='relu', use_bias=True,kernel_initializer='he_normal')(maxpool3)
# conv7 = BatchNormalization(epsilon=0.0002)(conv7)
# conv8 = Conv2D(filters=128 , kernel_size=[3, 3], padding='same', activation='relu', use_bias=True , kernel_initializer='he_normal')(conv7)
# conv8 = BatchNormalization(epsilon=0.0002)(conv8)
# maxpool4 = MaxPooling2D(pool_size=[2, 2], strides=None, padding='valid')(conv8)
reshape = Reshape([250, 3200])(maxpool3)
dense2 = Dense(units=1024, activation='relu', use_bias=True, kernel_initializer='he_normal')(reshape)
dense2 = BatchNormalization(epsilon=0.0002)(dense2)
dense2 = Dropout(0.3)(dense2)
dense3 = Dense(units=1024, activation='relu', use_bias=True, kernel_initializer='he_normal')(dense2)
dense3 = BatchNormalization(epsilon=0.0002)(dense3)
dense3 = Dropout(0.3)(dense3)
dense4 = Dense(units=self.MS_OUTPUT_SIZE, use_bias=True, kernel_initializer='he_normal')(dense3)
y_pred = Activation(activation='softmax', name='activation')(dense4)
model_data = Model(inputs=input_data, outputs=y_pred)
# model_data.summary()
# plot_model(model_data , '/home/zhangwei/01.png')
labels = Input(shape=[self.label_max_string_length], name='labels', dtype='float32')
input_length = Input(shape=[1], name='input_length', dtype='int64')
label_length = Input(shape=[1], name='label_length', dtype='int64')
loss_out = Lambda(self.ctc_lambda_func, output_shape=[1, ], name='ctc')([y_pred, labels, input_length, label_length])
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
# model.summary()
sgd = SGD(lr=0.0005, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)
adam = Adam(lr=0.0005, epsilon=1e-6)
model.compile(optimizer=adam, loss={'ctc': lambda y_true, y_pred: y_pred})
print('==========================模型創建成功=================================')
return model, model_data
pass
示例11: fit
# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def fit(self, learning_rate=0.001,
epochs=30,
n_negative_sample=4,
dataset_name='Movielens1M',
number_model=3,
verbose=1,
plot_model=True,
temp_file_folder=None,
**earlystopping_kwargs
):
self.learning_rate = learning_rate
self.num_epochs = epochs
self.num_negatives = n_negative_sample
self.dataset_name = dataset_name
self.number_model = number_model
self.plot_model = plot_model
self.verbose = verbose
self.current_epoch = 0
self.temp_file_folder = self._get_unique_temp_folder(input_temp_file_folder=temp_file_folder)
print("{}: Init model...".format(self.RECOMMENDER_NAME))
# load model
self.model = self._get_model(self.n_users, self.n_items, self.dataset_name, self.number_model)
# compile model
self.model.compile(optimizer=Adam(lr=self.learning_rate),loss='binary_crossentropy',metrics=['accuracy', 'mae'])
if self.plot_model:
utils.plot_model(self.model, show_shapes=True, to_file='CoupledCF_{}_model{}.png'.format(self.dataset_name, self.number_model))
if self.verbose > 1:
self.model.summary()
print("{}: Init model... done!".format(self.RECOMMENDER_NAME))
print("{}: Training...".format(self.RECOMMENDER_NAME))
self._update_best_model()
self._train_with_early_stopping(self.num_epochs,
algorithm_name = self.RECOMMENDER_NAME,
**earlystopping_kwargs)
self.load_model(self.temp_file_folder, file_name="_best_model")
print("{}: Tranining complete".format(self.RECOMMENDER_NAME))
self._clean_temp_folder(temp_file_folder=self.temp_file_folder)
示例12: fit
# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def fit(self, learning_rate=0.001,
epochs=30,
n_negative_sample=4,
dataset_name='Movielens1M',
number_model=0,
verbose=1,
plot_model=True,
temp_file_folder=None,
**earlystopping_kwargs
):
self.learning_rate = learning_rate
self.num_epochs = epochs
self.num_negatives = n_negative_sample
self.dataset_name = dataset_name
self.number_model = number_model
self.plot_model = plot_model
self.verbose = verbose
self.current_epoch = 0
self.temp_file_folder = self._get_unique_temp_folder(input_temp_file_folder=temp_file_folder)
print("{}: Init model for {} ...".format(self.RECOMMENDER_NAME, self.dataset_name))
# load model
self.model = self._get_model(self.n_users, self.n_items, self.dataset_name, self.number_model)
# compile model
self.model.compile(optimizer=Adam(lr=self.learning_rate),
loss='binary_crossentropy',
metrics=['accuracy', 'mae'])
if self.plot_model:
utils.plot_model(self.model,
show_shapes=True,
to_file='CoupledCF_{}_model{}.png'.format(self.dataset_name, self.number_model))
if self.verbose > 1:
self.model.summary()
print("{}: Init model... done!".format(self.RECOMMENDER_NAME))
print("{}: Training...".format(self.RECOMMENDER_NAME))
self._update_best_model()
self._train_with_early_stopping(self.num_epochs,
algorithm_name = self.RECOMMENDER_NAME,
**earlystopping_kwargs)
self.load_model(self.temp_file_folder, file_name="_best_model")
print("{}: Tranining complete".format(self.RECOMMENDER_NAME))
self._clean_temp_folder(temp_file_folder=self.temp_file_folder)
示例13: __init__
# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def __init__(self):
optimizer = Adam(0.0004, 0.5, clipnorm = 1)
opt_small = Adam(0.0002, 0.5, clipnorm = 1)
inputs_real = [position_input, img_ident_input]
inputs_fake = [position_input, latent_input]
#main pieces
if (not os.path.isfile('generator.h5')):
img_ident_layer = Dense(LATENT_SPACE, activation='tanh')(img_ident_input)
self.ident = Model(img_ident_input, img_ident_layer, name = 'IDENT')
#plot_model(self.ident, to_file='ident.png', show_shapes=True)
self.generator = self.build_generator()
#plot_model(self.generator, to_file='generator.png', show_shapes=True)
self.discriminator = self.build_discriminator()
#plot_model(self.discriminator, to_file='discriminator.png', show_shapes=True)
else:
self.discriminator = load_model('discriminator.h5')
self.generator = load_model('generator.h5')
self.ident = load_model('ident.h5')
self.ident.trainable = True
self.generator.trainable = True
self.generator.compile(loss='mse', optimizer=optimizer)
self.discriminator.trainable = False
self.generator_real_t = self.generator([position_input, self.ident([img_ident_input])])[0] #Train ident -> pixel as normal model
self.generator_real = Model(inputs_real, self.generator_real_t, name = 'generator_real')
self.generator_real.compile(loss='mse', optimizer=optimizer)
#plot_model(self.generator_real, to_file='generator_real.png', show_shapes=True)
self.generator_fake_t = self.discriminator(self.generator(inputs_fake)[1]) #Train noise -> 1 on discriminator
self.generator_fake = Model(inputs_fake, self.generator_fake_t, name = 'generator_fake')
self.generator_fake.compile(loss='binary_crossentropy', optimizer=opt_small)
#plot_model(self.generator_fake, to_file='generator_fake.png', show_shapes=True)
self.ident.trainable = False
self.generator.trainable = False
self.discriminator.trainable = True
self.discriminator_real_t = self.discriminator(self.generator([position_input, self.ident([img_ident_input])])[1]) #Train discriminator assign ident -> 1
self.discriminator_real = Model(inputs_real, self.discriminator_real_t, name = 'discriminator_real')
self.discriminator_real.compile(loss='binary_crossentropy', optimizer=opt_small)
#plot_model(self.discriminator_real, to_file='discriminator_real.png', show_shapes=True)
self.discriminator_fake_t = self.discriminator(self.generator(inputs_fake)[1]) #Train discriminator assign noise -> 0
self.discriminator_fake = Model(inputs_fake, self.discriminator_fake_t, name = 'discriminator_fake')
self.discriminator_fake.compile(loss='binary_crossentropy', optimizer=opt_small)
#plot_model(self.discriminator_fake, to_file='discriminator_fake.png', show_shapes=True)
# Do not use Batch Normalization anywhere, it will be harmful for discriminator ability
# to distinguish good and bad samples, and as a result it will break the generator
示例14: main
# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import plot_model [as 別名]
def main(args):
print('Loading data...')
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
print(len(x_train), 'train sequences')
print(len(x_test), 'test sequences')
print("Pad sequences (samples x time)")
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
y_train = np.array(y_train)
y_test = np.array(y_test)
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)
if os.path.exists('blstm.h5'):
model = load_model('blstm.h5')
else:
model = Sequential()
model.add(Embedding(max_features, 128, input_length=maxlen))
model.add(Bidirectional(LSTM(64)))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
# try using different optimizers and different optimizer configs
model.compile('adam', 'binary_crossentropy', metrics=['accuracy'])
print('Train...')
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=4,
validation_data=[x_test, y_test], verbose=2)
model.save('blstm.h5')
# plot_model(model)
pred_y = model.predict(x_test)
plt.figure()
plt.plot(y_test, 'g')
plt.plot(pred_y, 'r--')
plt.show()