當前位置: 首頁>>代碼示例>>Python>>正文


Python np_utils.to_categorical方法代碼示例

本文整理匯總了Python中keras.utils.np_utils.to_categorical方法的典型用法代碼示例。如果您正苦於以下問題:Python np_utils.to_categorical方法的具體用法?Python np_utils.to_categorical怎麽用?Python np_utils.to_categorical使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.utils.np_utils的用法示例。


在下文中一共展示了np_utils.to_categorical方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: setUp

# 需要導入模塊: from keras.utils import np_utils [as 別名]
# 或者: from keras.utils.np_utils import to_categorical [as 別名]
def setUp(self):
        iris = load_iris()

        theano.config.floatX = 'float32'
        X = iris.data.astype(theano.config.floatX)
        y = iris.target.astype(np.int32)
        y_ohe = np_utils.to_categorical(y)

        model = Sequential()
        model.add(Dense(input_dim=X.shape[1], output_dim=5, activation='tanh'))
        model.add(Dense(input_dim=5, output_dim=y_ohe.shape[1], activation='sigmoid'))
        model.compile(loss='categorical_crossentropy', optimizer='sgd')
        model.fit(X, y_ohe, nb_epoch=10, batch_size=1, verbose=3, validation_data=None)

        params = {'copyright': 'Václav Čadek', 'model_name': 'Iris Model'}
        self.model = model
        self.pmml = keras2pmml(self.model, **params)
        self.num_inputs = self.model.input_shape[1]
        self.num_outputs = self.model.output_shape[1]
        self.num_connection_layers = len(self.model.layers)
        self.features = ['x{}'.format(i) for i in range(self.num_inputs)]
        self.class_values = ['y{}'.format(i) for i in range(self.num_outputs)] 
開發者ID:vaclavcadek,項目名稱:keras2pmml,代碼行數:24,代碼來源:sequential.py

示例2: nn_model

# 需要導入模塊: from keras.utils import np_utils [as 別名]
# 或者: from keras.utils.np_utils import to_categorical [as 別名]
def nn_model():
    (x_train, y_train), _ = mnist.load_data()
    # 歸一化
    x_train = x_train.reshape(x_train.shape[0], -1) / 255.
    # one-hot
    y_train = np_utils.to_categorical(y=y_train, num_classes=10)
    # constant(value=1.)自定義常數,constant(value=1.)===one()
    # 創建模型:輸入784個神經元,輸出10個神經元
    model = Sequential([
        Dense(units=200, input_dim=784, bias_initializer=constant(value=1.), activation=tanh),
        Dense(units=100, bias_initializer=one(), activation=tanh),
        Dense(units=10, bias_initializer=one(), activation=softmax),
    ])

    opt = SGD(lr=0.2, clipnorm=1.)  # 優化器
    model.compile(optimizer=opt, loss=categorical_crossentropy, metrics=['acc', 'mae'])  # 編譯
    model.fit(x_train, y_train, batch_size=64, epochs=20, callbacks=[RemoteMonitor()])
    model_save(model, './model.h5') 
開發者ID:jtyoui,項目名稱:Jtyoui,代碼行數:20,代碼來源:HandWritingRecognition.py

示例3: load_and_preprocess_data_3

# 需要導入模塊: from keras.utils import np_utils [as 別名]
# 或者: from keras.utils.np_utils import to_categorical [as 別名]
def load_and_preprocess_data_3():
    # The data, shuffled and split between train and test sets:
    (X_train, y_train), (x_test, y_test) = cifar10.load_data()
    logging.debug('X_train shape: {}'.format(X_train.shape))
    logging.debug('train samples: {}'.format(X_train.shape[0]))
    logging.debug('test samples: {}'.format(x_test.shape[0]))

    # Convert class vectors to binary class matrices.
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)

    X_train = X_train.astype('float32')
    x_test = x_test.astype('float32')
    X_train /= 255
    x_test /= 255

    input_shape = X_train[0].shape
    logging.debug('input_shape {}'.format(input_shape))
    input_shape = X_train.shape[1:]
    logging.debug('input_shape {}'.format(input_shape))

    return X_train, x_test, y_train, y_test, input_shape 
開發者ID:abhishekrana,項目名稱:DeepFashion,代碼行數:24,代碼來源:cnn.py

示例4: test_vector_clf

# 需要導入模塊: from keras.utils import np_utils [as 別名]
# 或者: from keras.utils.np_utils import to_categorical [as 別名]
def test_vector_clf(self):
        nb_hidden = 10

        print('vector classification data:')
        (X_train, y_train), (X_test, y_test) = get_test_data(nb_train=1000, nb_test=200, input_shape=(10,),
                                                             classification=True, nb_class=2)
        print('X_train:', X_train.shape)
        print('X_test:', X_test.shape)
        print('y_train:', y_train.shape)
        print('y_test:', y_test.shape)

        y_train = to_categorical(y_train)
        y_test = to_categorical(y_test)

        model = Sequential()
        model.add(Dense(X_train.shape[-1], nb_hidden))
        model.add(Activation('relu'))
        model.add(Dense(nb_hidden, y_train.shape[-1]))
        model.add(Activation('softmax'))
        model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
        history = model.fit(X_train, y_train, nb_epoch=12, batch_size=16, validation_data=(X_test, y_test), show_accuracy=True, verbose=2)
        print(history.history)
        self.assertTrue(history.history['val_acc'][-1] > 0.9) 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:25,代碼來源:test_tasks.py

示例5: test_temporal_clf

# 需要導入模塊: from keras.utils import np_utils [as 別名]
# 或者: from keras.utils.np_utils import to_categorical [as 別名]
def test_temporal_clf(self):
        print('temporal classification data:')
        (X_train, y_train), (X_test, y_test) = get_test_data(nb_train=1000, nb_test=200, input_shape=(5,10), 
                                                             classification=True, nb_class=2)
        print('X_train:', X_train.shape)
        print('X_test:', X_test.shape)
        print('y_train:', y_train.shape)
        print('y_test:', y_test.shape)

        y_train = to_categorical(y_train)
        y_test = to_categorical(y_test)

        model = Sequential()
        model.add(GRU(X_train.shape[-1], y_train.shape[-1]))
        model.add(Activation('softmax'))
        model.compile(loss='categorical_crossentropy', optimizer='adadelta')
        history = model.fit(X_train, y_train, nb_epoch=12, batch_size=16, validation_data=(X_test, y_test), show_accuracy=True, verbose=2)
        self.assertTrue(history.history['val_acc'][-1] > 0.9) 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:20,代碼來源:test_tasks.py

示例6: test_img_clf

# 需要導入模塊: from keras.utils import np_utils [as 別名]
# 或者: from keras.utils.np_utils import to_categorical [as 別名]
def test_img_clf(self):
        print('image classification data:')
        (X_train, y_train), (X_test, y_test) = get_test_data(nb_train=1000, nb_test=200, input_shape=(3, 32, 32),
                                                             classification=True, nb_class=2)
        print('X_train:', X_train.shape)
        print('X_test:', X_test.shape)
        print('y_train:', y_train.shape)
        print('y_test:', y_test.shape)

        y_train = to_categorical(y_train)
        y_test = to_categorical(y_test)

        model = Sequential()
        model.add(Convolution2D(32, 3, 32, 32))
        model.add(Activation('sigmoid'))
        model.add(Flatten())
        model.add(Dense(32, y_test.shape[-1]))
        model.add(Activation('softmax'))
        model.compile(loss='categorical_crossentropy', optimizer='sgd')
        history = model.fit(X_train, y_train, nb_epoch=12, batch_size=16, validation_data=(X_test, y_test), show_accuracy=True, verbose=2)
        self.assertTrue(history.history['val_acc'][-1] > 0.9) 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:23,代碼來源:test_tasks.py

示例7: get_cifar10

# 需要導入模塊: from keras.utils import np_utils [as 別名]
# 或者: from keras.utils.np_utils import to_categorical [as 別名]
def get_cifar10():
    """Retrieve the CIFAR dataset and process the data."""
    # Set defaults.
    nb_classes = 10
    batch_size = 64
    input_shape = (3072,)

    # Get the data.
    (x_train, y_train), (x_test, y_test) = cifar10.load_data()
    x_train = x_train.reshape(50000, 3072)
    x_test = x_test.reshape(10000, 3072)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255

    # convert class vectors to binary class matrices
    y_train = to_categorical(y_train, nb_classes)
    y_test = to_categorical(y_test, nb_classes)

    return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test) 
開發者ID:harvitronix,項目名稱:super-simple-distributed-keras,代碼行數:23,代碼來源:datasets.py

示例8: get_mnist

# 需要導入模塊: from keras.utils import np_utils [as 別名]
# 或者: from keras.utils.np_utils import to_categorical [as 別名]
def get_mnist():
    """Retrieve the MNIST dataset and process the data."""
    # Set defaults.
    nb_classes = 10
    batch_size = 128
    input_shape = (784,)

    # Get the data.
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape(60000, 784)
    x_test = x_test.reshape(10000, 784)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255

    # convert class vectors to binary class matrices
    y_train = to_categorical(y_train, nb_classes)
    y_test = to_categorical(y_test, nb_classes)

    return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test) 
開發者ID:harvitronix,項目名稱:super-simple-distributed-keras,代碼行數:23,代碼來源:datasets.py

示例9: read_data

# 需要導入模塊: from keras.utils import np_utils [as 別名]
# 或者: from keras.utils.np_utils import to_categorical [as 別名]
def read_data(data_limit):
    print "Reading Data..."
    img_data = h5py.File(data_img)
    ques_data = h5py.File(data_prepo)
  
    img_data = np.array(img_data['images_train'])
    img_pos_train = ques_data['img_pos_train'][:data_limit]
    train_img_data = np.array([img_data[_-1,:] for _ in img_pos_train])
    # Normalizing images
    tem = np.sqrt(np.sum(np.multiply(train_img_data, train_img_data), axis=1))
    train_img_data = np.divide(train_img_data, np.transpose(np.tile(tem,(4096,1))))

    #shifting padding to left side
    ques_train = np.array(ques_data['ques_train'])[:data_limit, :]
    ques_length_train = np.array(ques_data['ques_length_train'])[:data_limit]
    ques_train = right_align(ques_train, ques_length_train)

    train_X = [train_img_data, ques_train]
    # NOTE should've consturcted one-hots using exhausitve list of answers, cause some answers may not be in dataset
    # To temporarily rectify this, all those answer indices is set to 1 in validation set
    train_y = to_categorical(ques_data['answers'])[:data_limit, :]

    return train_X, train_y 
開發者ID:anantzoid,項目名稱:VQA-Keras-Visual-Question-Answering,代碼行數:25,代碼來源:prepare_data.py

示例10: loadData

# 需要導入模塊: from keras.utils import np_utils [as 別名]
# 或者: from keras.utils.np_utils import to_categorical [as 別名]
def loadData(x_load_path, y_load_path):
    # load train data
    x_data_mat = sio.loadmat(x_load_path)
    x_data_complex = x_data_mat['train_data']
    x_data_real = x_data_complex.real
    x_data_imag = x_data_complex.imag
    x_data_real = x_data_real.reshape((x_data_real.shape[0], seqLen))
    x_data_imag = x_data_imag.reshape((x_data_imag.shape[0], seqLen))
    x_train = np.stack((x_data_real, x_data_imag), axis=2)
    y_data_mat = sio.loadmat(y_load_path)
    y_data = y_data_mat['train_label']
    y_train = np_utils.to_categorical(y_data, nClass)
    # train data shuffle
    index = np.arange(y_train.shape[0])
    np.random.shuffle(index)
    x_train = x_train[index,:]
    y_train = y_train[index]
    return [x_train, y_train]


# fix random seed 
開發者ID:iyytdeed,項目名稱:Automatic-Modulation-Classification,代碼行數:23,代碼來源:train_LSTM_memLess.py

示例11: get_data_generator

# 需要導入模塊: from keras.utils import np_utils [as 別名]
# 或者: from keras.utils.np_utils import to_categorical [as 別名]
def get_data_generator(data_iterator,
                       num_classes):
    def get_arrays(db):
        data = db.data[0].asnumpy()
        if K.image_data_format() == "channels_last":
            data = data.transpose((0, 2, 3, 1))
        labels = to_categorical(
            y=db.label[0].asnumpy(),
            num_classes=num_classes)
        return data, labels

    while True:
        try:
            db = data_iterator.next()

        except StopIteration:
            # logging.warning("get_data exception due to end of data - resetting iterator")
            data_iterator.reset()
            db = data_iterator.next()

        finally:
            yield get_arrays(db) 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:24,代碼來源:utils.py

示例12: cnn_example

# 需要導入模塊: from keras.utils import np_utils [as 別名]
# 或者: from keras.utils.np_utils import to_categorical [as 別名]
def cnn_example():
    to_flatten = False
    x_train, x_test, y_train, y_test, num_labels = extract_data(
        flatten=to_flatten)
    y_train = np_utils.to_categorical(y_train)
    y_test_train = np_utils.to_categorical(y_test)
    in_shape = x_train[0].shape
    x_train = x_train.reshape(x_train.shape[0], in_shape[0], in_shape[1], 1)
    x_test = x_test.reshape(x_test.shape[0], in_shape[0], in_shape[1], 1)
    model = CNN(input_shape=x_train[0].shape,
                num_classes=num_labels)
    model.train(x_train, y_train, x_test, y_test_train)
    model.evaluate(x_test, y_test)
    filename = '../dataset/Sad/09b03Ta.wav'
    print('prediction', model.predict_one(
        get_feature_vector_from_mfcc(filename, flatten=to_flatten)),
          'Actual 3')
    print('CNN Done') 
開發者ID:harry-7,項目名稱:speech-emotion-recognition,代碼行數:20,代碼來源:cnn_example.py

示例13: test_train

# 需要導入模塊: from keras.utils import np_utils [as 別名]
# 或者: from keras.utils.np_utils import to_categorical [as 別名]
def test_train(self):
        train = pd.read_csv("/input/tests/data/train.csv")

        x_train = train.iloc[:,1:].values.astype('float32')
        y_train = to_categorical(train.iloc[:,0].astype('int32'))

        model = Sequential()
        model.add(Dense(units=10, input_dim=784, activation='softmax'))

        model.compile(
            loss='categorical_crossentropy',
            optimizer=RMSprop(lr=0.001),
            metrics=['accuracy'])

        model.fit(x_train, y_train, epochs=1, batch_size=32)

    # Uses convnet which depends on libcudnn when running on GPU 
開發者ID:Kaggle,項目名稱:docker-python,代碼行數:19,代碼來源:test_keras.py

示例14: test_lstm

# 需要導入模塊: from keras.utils import np_utils [as 別名]
# 或者: from keras.utils.np_utils import to_categorical [as 別名]
def test_lstm(self):
        x_train = np.random.random((100, 100, 100))
        y_train = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
        x_test = np.random.random((20, 100, 100))
        y_test = keras.utils.to_categorical(np.random.randint(10, size=(20, 1)), num_classes=10)

        sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)

        model = Sequential()
        model.add(LSTM(32, return_sequences=True, input_shape=(100, 100)))
        model.add(Flatten())
        model.add(Dense(10, activation='softmax'))


        model.compile(loss='categorical_crossentropy', optimizer=sgd)
        model.fit(x_train, y_train, batch_size=32, epochs=1)
        model.evaluate(x_test, y_test, batch_size=32) 
開發者ID:Kaggle,項目名稱:docker-python,代碼行數:19,代碼來源:test_keras.py

示例15: conv_seq_labels

# 需要導入模塊: from keras.utils import np_utils [as 別名]
# 或者: from keras.utils.np_utils import to_categorical [as 別名]
def conv_seq_labels(xds, xhs, nflips, model, debug, oov0, glove_idx2idx, vocab_size, nb_unknown_words, idx2word):
    """Convert description and hedlines to padded input vectors; headlines are one-hot to label."""
    batch_size = len(xhs)
    assert len(xds) == batch_size
    x = [
        vocab_fold(lpadd(xd) + xh, oov0, glove_idx2idx, vocab_size, nb_unknown_words)
        for xd, xh in zip(xds, xhs)]  # the input does not have 2nd eos
    x = sequence.pad_sequences(x, maxlen=maxlen, value=empty, padding='post', truncating='post')
    x = flip_headline(x, nflips=nflips, model=model, debug=debug, oov0=oov0, idx2word=idx2word)

    y = np.zeros((batch_size, maxlenh, vocab_size))
    for i, xh in enumerate(xhs):
        xh = vocab_fold(xh, oov0, glove_idx2idx, vocab_size, nb_unknown_words) + [eos] + [empty] * maxlenh  # output does have a eos at end
        xh = xh[:maxlenh]
        y[i, :, :] = np_utils.to_categorical(xh, vocab_size)

    return x, y 
開發者ID:rtlee9,項目名稱:recipe-summarization,代碼行數:19,代碼來源:generate.py


注:本文中的keras.utils.np_utils.to_categorical方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。