當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.multi_gpu_model方法代碼示例

本文整理匯總了Python中keras.utils.multi_gpu_model方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.multi_gpu_model方法的具體用法?Python utils.multi_gpu_model怎麽用?Python utils.multi_gpu_model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.utils的用法示例。


在下文中一共展示了utils.multi_gpu_model方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import multi_gpu_model [as 別名]
def __init__(self, config):
        # Initialize model
        model = Unet(input_shape=config["input_shape"],
                     n_labels=config["classes"],
                     activation="sigmoid")
        # Transform to Keras multi GPU model
        if config["gpu_number"] > 1:
            model = multi_gpu_model(model, config["gpu_number"])
        # Compile model
        model.compile(optimizer=Adam(lr=config["learninig_rate"]),
                      loss=tversky_loss,
                      metrics=self.metrics)
        self.model = model
        self.config = config

    # Train the Neural Network model on the provided case ids 
開發者ID:muellerdo,項目名稱:kits19.MIScnn,代碼行數:18,代碼來源:neural_network.py

示例2: __build_model

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import multi_gpu_model [as 別名]
def __build_model(self, emb_matrix=None):
        word_input = Input(shape=(None,), dtype='int32', name="word_input")

        word_emb = Embedding(self.vocab_size + 1, self.embed_dim,
                             weights=[emb_matrix] if emb_matrix is not None else None,
                             trainable=True if emb_matrix is None else False,
                             name='word_emb')(word_input)

        bilstm_output = Bidirectional(LSTM(self.bi_lstm_units // 2,
                                           return_sequences=True))(word_emb)

        bilstm_output = Dropout(self.dropout_rate)(bilstm_output)

        output = Dense(self.chunk_size + 1, kernel_initializer="he_normal")(bilstm_output)
        output = CRF(self.chunk_size + 1, sparse_target=self.sparse_target)(output)

        model = Model([word_input], [output])
        parallel_model = model
        if self.num_gpu > 1:
            parallel_model = multi_gpu_model(model, gpus=self.num_gpu)

        parallel_model.compile(optimizer=self.optimizer, loss=crf_loss, metrics=[crf_accuracy])
        return model, parallel_model 
開發者ID:GlassyWing,項目名稱:bi-lstm-crf,代碼行數:25,代碼來源:core.py

示例3: interp_net

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import multi_gpu_model [as 別名]
def interp_net():
    if gpu_num > 1:
        dev = "/cpu:0"
    else:
        dev = "/gpu:0"
    with tf.device(dev):
        main_input = Input(shape=(4*num_features, timestamp), name='input')
        sci = single_channel_interp(ref_points, hours_look_ahead)
        cci = cross_channel_interp()
        interp = cci(sci(main_input))
        reconst = cci(sci(main_input, reconstruction=True),
                      reconstruction=True)
        aux_output = Lambda(lambda x: x, name='aux_output')(reconst)
        z = Permute((2, 1))(interp)
        z = GRU(hid, activation='tanh', recurrent_dropout=0.2, dropout=0.2)(z)
        main_output = Dense(1, activation='sigmoid', name='main_output')(z)
        orig_model = Model([main_input], [main_output, aux_output])
    if gpu_num > 1:
        model = multi_gpu_model(orig_model, gpus=gpu_num)
    else:
        model = orig_model
    print(orig_model.summary())
    return model 
開發者ID:mlds-lab,項目名稱:interp-net,代碼行數:25,代碼來源:multivariate_example.py

示例4: multi_gpu_test_simple_model

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import multi_gpu_model [as 別名]
def multi_gpu_test_simple_model():
    print('####### test simple model')
    num_samples = 1000
    input_dim = 10
    output_dim = 1
    hidden_dim = 10
    gpus = 8
    target_gpu_id = [0, 2, 4]
    epochs = 2
    model = keras.models.Sequential()
    model.add(keras.layers.Dense(hidden_dim,
                                 input_shape=(input_dim,)))
    model.add(keras.layers.Dense(output_dim))

    x = np.random.random((num_samples, input_dim))
    y = np.random.random((num_samples, output_dim))

    parallel_model = multi_gpu_model(model, gpus=gpus)
    parallel_model.compile(loss='mse', optimizer='rmsprop')
    parallel_model.fit(x, y, epochs=epochs)

    parallel_model = multi_gpu_model(model, gpus=target_gpu_id)
    parallel_model.compile(loss='mse', optimizer='rmsprop')
    parallel_model.fit(x, y, epochs=epochs) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:26,代碼來源:multi_gpu_test.py

示例5: multi_gpu

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import multi_gpu_model [as 別名]
def multi_gpu(model, gpus=None, cpu_merge=True, cpu_relocation=False):

    '''Takes as input the model, and returns a model
    based on the number of GPUs available on the machine
    or alternatively the 'gpus' user input.

    NOTE: this needs to be used before model.compile() in the
    model inputted to Scan in the form:

    from talos.utils.gpu_utils import multi_gpu
    model = multi_gpu(model)

    '''

    from keras.utils import multi_gpu_model

    return multi_gpu_model(model,
                           gpus=gpus,
                           cpu_merge=cpu_merge,
                           cpu_relocation=cpu_relocation) 
開發者ID:autonomio,項目名稱:talos,代碼行數:22,代碼來源:gpu_utils.py

示例6: build_model

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import multi_gpu_model [as 別名]
def build_model(self, model, gpus=1, **compile_kwargs):
        """
        Compile a Keras Functional model.

        :param model: keras.models.Model: Keras functional model
        :param gpus: int: number of GPU units on which to parallelize the Keras model
        :param compile_kwargs: kwargs passed to the 'compile' method of the Keras model
        """
        # Test the parameters
        if type(gpus) is not int:
            raise TypeError("'gpus' argument must be an int")
        # Self-explanatory
        util.make_keras_picklable()
        # Build a model, either on a single GPU or on a CPU to control multiple GPUs
        self.base_model = model
        self._n_steps = len(model.outputs)
        if gpus > 1:
            import tensorflow as tf
            with tf.device('/cpu:0'):
                self.base_model = keras.models.clone_model(self.base_model)
            self.model = multi_gpu_model(self.base_model, gpus=gpus)
            self.gpus = gpus
        else:
            self.model = self.base_model
        self.model.compile(**compile_kwargs) 
開發者ID:jweyn,項目名稱:DLWP,代碼行數:27,代碼來源:models.py

示例7: build

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import multi_gpu_model [as 別名]
def build(self):
        """ Build the model. Override for custom build methods """
        self.add_networks()
        self.load_models(swapped=False)
        inputs = self.get_inputs()
        try:
            self.build_autoencoders(inputs)
        except ValueError as err:
            if "must be from the same graph" in str(err).lower():
                msg = ("There was an error loading saved weights. This is most likely due to "
                       "model corruption during a previous save."
                       "\nYou should restore weights from a snapshot or from backup files. "
                       "You can use the 'Restore' Tool to restore from backup.")
                raise FaceswapError(msg) from err
            if "multi_gpu_model" in str(err).lower():
                raise FaceswapError(str(err)) from err
            raise err
        self.log_summary()
        self.compile_predictors(initialize=True) 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:21,代碼來源:_base.py

示例8: load_model

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import multi_gpu_model [as 別名]
def load_model(model_path):
    custom_layers = {
        "multihead_attention": multihead_attention,
        "Conv2D": L.Conv2D,
        "split_heads_2d": split_heads_2d,
        "local_attention_2d": local_attention_2d,
        "combine_heads_2d": combine_heads_2d
    }
    model = model_from_yaml(open(os.path.join(model_path, "arch.yaml")).read(), custom_objects=custom_layers)

    full_path = os.path.join(model_path, "weights.h5")
    with h5py.File(full_path, "r") as w:
        keys = list(w.keys())
        is_para = any(["model" in k for k in keys])

    if is_para:
        para_model = multi_gpu_model(model, gpus=2)
        para_model.load_weights(full_path)
        model = para_model.layers[-2]
    else:
        model.load_weights(full_path)

    print("Model " + model_path + " loaded")
    return model 
開發者ID:BreezeWhite,項目名稱:Music-Transcription-with-Semantic-Segmentation,代碼行數:26,代碼來源:utils.py

示例9: __init__

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import multi_gpu_model [as 別名]
def __init__(self, ser_model, gpus):
        pmodel = multi_gpu_model(ser_model, gpus)
        self.__dict__.update(pmodel.__dict__)
        self._smodel = ser_model 
開發者ID:bill9800,項目名稱:speech_separation,代碼行數:6,代碼來源:model_ops.py

示例10: generate

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import multi_gpu_model [as 別名]
def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'

        # Load model, or construct model and load weights.
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)
        is_tiny_version = num_anchors==6 # default setting
        try:
            self.yolo_model = load_model(model_path, compile=False)
        except:
            self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
                if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
            self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
        else:
            assert self.yolo_model.layers[-1].output_shape[-1] == \
                num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
                'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        if self.gpu_num>=2:
            self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
                len(self.class_names), self.input_image_shape,
                score_threshold=self.score, iou_threshold=self.iou)
        return boxes, scores, classes 
開發者ID:lijialinneu,項目名稱:keras-yolo3-master,代碼行數:42,代碼來源:yolo.py

示例11: instantiate_multigpu_model_if_multiple_gpus

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import multi_gpu_model [as 別名]
def instantiate_multigpu_model_if_multiple_gpus(training_model):
    if len(cfg.gpus) > 1:
        training_model = multi_gpu_model(training_model, len(cfg.gpus))
    return training_model 
開發者ID:kurapan,項目名稱:CRNN,代碼行數:6,代碼來源:train.py

示例12: cnn

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import multi_gpu_model [as 別名]
def cnn(embedding_matrix, char_matrix, num_classes, max_seq_len, max_ll3_seq_len,
        num_filters=64, l2_weight_decay=0.0001, dropout_val=0.5,
        dense_dim=32, add_sigmoid=True, train_embeds=False, gpus=0,
        n_cnn_layers=1, pool='max', add_embeds=False):
    if pool == 'max':
        Pooling = MaxPooling1D
        GlobalPooling = GlobalMaxPooling1D
    elif pool == 'avg':
        Pooling = AveragePooling1D
        GlobalPooling = GlobalAveragePooling1D
    input_ = Input(shape=(max_seq_len,))
    embeds = Embedding(embedding_matrix.shape[0],
                       embedding_matrix.shape[1],
                       weights=[embedding_matrix],
                       input_length=max_seq_len,
                       trainable=train_embeds)(input_)
    x = embeds
    for i in range(n_cnn_layers-1):
        x = Conv1D(num_filters, 7, activation='relu', padding='same')(x)
        x = Pooling(2)(x)
    x = Conv1D(num_filters, 7, activation='relu', padding='same')(x)
    x = GlobalPooling()(x)
    if add_embeds:
        x1 = Conv1D(num_filters, 7, activation='relu', padding='same')(embeds)
        x1 = GlobalPooling()(x1)
        x = Concatenate()([x, x1])
    x = BatchNormalization()(x)
    x = Dropout(dropout_val)(x)
    x = Dense(dense_dim, activation='relu', kernel_regularizer=regularizers.l2(l2_weight_decay))(x)
    if add_sigmoid:
        x = Dense(num_classes, activation='sigmoid')(x)
    model = Model(inputs=input_, outputs=x)
    if gpus > 0:
        model = multi_gpu_model(model, gpus=gpus)
    return model 
開發者ID:Donskov7,項目名稱:toxic_comments,代碼行數:37,代碼來源:models.py

示例13: create_models

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import multi_gpu_model [as 別名]
def create_models(backbone_retinanet, num_classes, weights, multi_gpu=0, freeze_backbone=False):
    """ Creates three models (model, training_model, prediction_model).

    Args
        backbone_retinanet : A function to call to create a retinanet model with a given backbone.
        num_classes        : The number of classes to train.
        weights            : The weights to load into the model.
        multi_gpu          : The number of GPUs to use for training.
        freeze_backbone    : If True, disables learning for the backbone.

    Returns
        model            : The base model. This is also the model that is saved in snapshots.
        training_model   : The training model. If multi_gpu=0, this is identical to model.
        prediction_model : The model wrapped with utility functions to perform object detection (applies regression values and performs NMS).
    """
    modifier = freeze_model if freeze_backbone else None

    # Keras recommends initialising a multi-gpu model on the CPU to ease weight sharing, and to prevent OOM errors.
    # optionally wrap in a parallel model
    if multi_gpu > 1:
        from keras.utils import multi_gpu_model
        with tf.device('/cpu:0'):
            model = model_with_weights(backbone_retinanet(num_classes, modifier=modifier), weights=weights, skip_mismatch=True)
        training_model = multi_gpu_model(model, gpus=multi_gpu)
    else:
        model          = model_with_weights(backbone_retinanet(num_classes, modifier=modifier), weights=weights, skip_mismatch=True)
        training_model = model

    # make prediction model
    prediction_model = retinanet_bbox(model=model)

    # compile model
    training_model.compile(
        loss={
            'regression'    : losses.smooth_l1(),
            'classification': losses.focal()
        },
        optimizer=keras.optimizers.adam(lr=1e-5, clipnorm=0.001)
    )

    return model, training_model, prediction_model 
開發者ID:i-pan,項目名稱:kaggle-rsna18,代碼行數:43,代碼來源:train_kaggle.py

示例14: __init__

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import multi_gpu_model [as 別名]
def __init__(self, ser_model, gpus):
        pmodel = multi_gpu_model(ser_model, gpus, cpu_relocation=False, cpu_merge=False)
        self.__dict__.update(pmodel.__dict__)
        self._smodel = ser_model 
開發者ID:dsgissin,項目名稱:DiscriminativeActiveLearning,代碼行數:6,代碼來源:models.py

示例15: compiled_model

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import multi_gpu_model [as 別名]
def compiled_model(self):
        if self.config.gpu_count > 1:
            # 複數GPUで並列処理
            with tf.device('/cpu:0'):
                model, n_outputs = self._build_model()
            model = multi_gpu_model(model, self.config.gpu_count)
        else:
            model, n_outputs = self._build_model()

        # compile()ではlossを指定しないが、空ではエラーになるためNoneのリストを指定する。
        model.compile(optimizer=Adam(lr=self.config.learning_rate),
                      loss=[None] * n_outputs)
        return model 
開發者ID:shtamura,項目名稱:maskrcnn,代碼行數:15,代碼來源:frcnn.py


注:本文中的keras.utils.multi_gpu_model方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。