本文整理匯總了Python中keras.utils方法的典型用法代碼示例。如果您正苦於以下問題:Python keras.utils方法的具體用法?Python keras.utils怎麽用?Python keras.utils使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras
的用法示例。
在下文中一共展示了keras.utils方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_and_preprocess_data_3
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def load_and_preprocess_data_3():
# The data, shuffled and split between train and test sets:
(X_train, y_train), (x_test, y_test) = cifar10.load_data()
logging.debug('X_train shape: {}'.format(X_train.shape))
logging.debug('train samples: {}'.format(X_train.shape[0]))
logging.debug('test samples: {}'.format(x_test.shape[0]))
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
X_train = X_train.astype('float32')
x_test = x_test.astype('float32')
X_train /= 255
x_test /= 255
input_shape = X_train[0].shape
logging.debug('input_shape {}'.format(input_shape))
input_shape = X_train.shape[1:]
logging.debug('input_shape {}'.format(input_shape))
return X_train, x_test, y_train, y_test, input_shape
示例2: generate_samples
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def generate_samples(self, T, g_data, num, output_file):
'''
Generate sample sentences to output file
# Arguments:
T: int, max time steps
g_data: SeqGAN.utils.GeneratorPretrainingGenerator
num: int, number of sentences
output_file: str, path
'''
sentences=[]
for _ in range(num // self.B + 1):
actions = self.sampling_sentence(T)
actions_list = actions.tolist()
for sentence_id in actions_list:
sentence = [g_data.id2word[action] for action in sentence_id]
sentences.append(sentence)
output_str = ''
for i in range(num):
output_str += ' '.join(sentences[i]) + '\n'
with open(output_file, 'w', encoding='utf-8') as f:
f.write(output_str)
示例3: __data_generation
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def __data_generation(self,list_files,labels):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.empty((len(list_files),self.dim[0],self.dim[1],self.dim[2]))
y = np.empty((len(list_files)),dtype=int)
# print(X.shape,y.shape)
# Generate data
k = -1
for i,f in enumerate(list_files):
# print(f)
img = get_im_cv2(f,dim=self.dim[0])
img = pre_process(img)
label = labels[i]
#label = keras.utils.np_utils.to_categorical(label,self.n_classes)
X[i,] = img
y[i,] = label
# print(X.shape,y.shape)
return X,y
示例4: replace_unknown_words
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def replace_unknown_words(self, src_word_seq, trg_word_seq, hard_alignment, unk_symbol,
heuristic=0, mapping=None, verbose=0):
"""
Replaces unknown words from the target sentence according to some heuristic.
Borrowed from: https://github.com/sebastien-j/LV_groundhog/blob/master/experiments/nmt/replace_UNK.py
:param src_word_seq: Source sentence words
:param trg_word_seq: Hypothesis words
:param hard_alignment: Target-Source alignments
:param unk_symbol: Symbol in trg_word_seq to replace
:param heuristic: Heuristic (0, 1, 2)
:param mapping: External alignment dictionary
:param verbose: Verbosity level
:return: trg_word_seq with replaced unknown words
"""
print "WARNING!: deprecated function, use utils.replace_unknown_words() instead"
return replace_unknown_words(src_word_seq, trg_word_seq, hard_alignment, unk_symbol,
heuristic=heuristic, mapping=mapping, verbose=verbose)
示例5: confusion_matrix
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def confusion_matrix(self, percentage=True, labeled=True):
"""Compute confusion matrix to evaluate the test accuracy of the classification"""
if not self.classification:
raise NotImplementedError("Confusion matrix works only when it is a classification problem")
y_pred = self.model.predict_classes(self.X_test)[0]
# invert from keras.utils.to_categorical
y_test = np.array([ np.argmax(y, axis=None, out=None) for y in self.y_test[0] ])
matrix = confusion_matrix(y_test, y_pred, labels=[self.emotions2int[e] for e in self.emotions]).astype(np.float32)
if percentage:
for i in range(len(matrix)):
matrix[i] = matrix[i] / np.sum(matrix[i])
# make it percentage
matrix *= 100
if labeled:
matrix = pd.DataFrame(matrix, index=[ f"true_{e}" for e in self.emotions ],
columns=[ f"predicted_{e}" for e in self.emotions ])
return matrix
示例6: model_mnist
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def model_mnist(logits=False, input_ph=None, img_rows=28, img_cols=28,
nb_filters=64, nb_classes=10):
warnings.warn("`utils_mnist.model_mnist` is deprecated. Switch to"
"`utils.cnn_model`. `utils_mnist.model_mnist` will "
"be removed after 2017-08-17.")
return utils.cnn_model(logits=logits, input_ph=input_ph,
img_rows=img_rows, img_cols=img_cols,
nb_filters=nb_filters, nb_classes=nb_classes)
示例7: get_preds
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def get_preds(model):
size = model.input_shape[1]
filename = os.path.join(os.path.dirname(__file__),
'data', '565727409_61693c5e14.jpg')
batch = KE.preprocess_input(img_to_array(load_img(
filename, target_size=(size, size))))
batch = np.expand_dims(batch, 0)
pred = decode_predictions(model.predict(batch),
backend=K, utils=utils)
return pred
示例8: train
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def train(dest_train,dest_val,outdir,batch_size,n_classes,dim,shuffle,epochs,lr):
char_to_index_dict,index_to_char_dict = create_dict_char_to_index()
model = _model_(n_classes)
from keras.utils import plot_model
plot_model(model, to_file=outdir + 'model.png')
train_generator = DataGenerator(dest_train,char_to_index_dict,batch_size,n_classes,dim,shuffle)
val_generator = DataGenerator(dest_val,char_to_index_dict,batch_size,n_classes,dim,shuffle)
model.fit_generator(train_generator,epochs=epochs,validation_data=val_generator)
model.save(outdir + 'captcha_breaker.h5')
示例9: read_data
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def read_data(self,class_folders,path,num_class,dim,train_val='train'):
print(train_val)
train_X,train_y = [],[]
for c in class_folders:
path_class = path + str(train_val) + '/' + str(c)
file_list = os.listdir(path_class)
for f in file_list:
img = self.get_im_cv2(path_class + '/' + f)
img = self.pre_process(img)
train_X.append(img)
label = int(c.split('class')[1])
train_y.append(int(label))
train_y = keras.utils.np_utils.to_categorical(np.array(train_y),num_class)
return np.array(train_X),train_y
示例10: _to_categorical
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def _to_categorical(y, num_classes=None, reshape=True):
"""
# copy of keras.utils.np_utils.to_categorical, but with a boolean matrix instead of float
Converts a class vector (integers) to binary class matrix.
E.g. for use with categorical_crossentropy.
# Arguments
y: class vector to be converted into a matrix
(integers from 0 to num_classes).
num_classes: total number of classes.
# Returns
A binary matrix representation of the input.
"""
oshape = y.shape
y = np.array(y, dtype='int').ravel()
if not num_classes:
num_classes = np.max(y) + 1
n = y.shape[0]
categorical = np.zeros((n, num_classes), bool)
categorical[np.arange(n), y] = 1
if reshape:
categorical = np.reshape(categorical, [*oshape, num_classes])
return categorical
示例11: get_kwargs
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def get_kwargs():
return {
'backend': keras.backend,
'layers': keras.layers,
'models': keras.models,
'utils': keras.utils,
}
示例12: create_models
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def create_models(backbone_retinanet, num_classes, weights, multi_gpu=0, freeze_backbone=False):
""" Creates three models (model, training_model, prediction_model).
Args
backbone_retinanet : A function to call to create a retinanet model with a given backbone.
num_classes : The number of classes to train.
weights : The weights to load into the model.
multi_gpu : The number of GPUs to use for training.
freeze_backbone : If True, disables learning for the backbone.
Returns
model : The base model. This is also the model that is saved in snapshots.
training_model : The training model. If multi_gpu=0, this is identical to model.
prediction_model : The model wrapped with utility functions to perform object detection (applies regression values and performs NMS).
"""
modifier = freeze_model if freeze_backbone else None
# Keras recommends initialising a multi-gpu model on the CPU to ease weight sharing, and to prevent OOM errors.
# optionally wrap in a parallel model
if multi_gpu > 1:
from keras.utils import multi_gpu_model
with tf.device('/cpu:0'):
model = model_with_weights(backbone_retinanet(num_classes, modifier=modifier), weights=weights, skip_mismatch=True)
training_model = multi_gpu_model(model, gpus=multi_gpu)
else:
model = model_with_weights(backbone_retinanet(num_classes, modifier=modifier), weights=weights, skip_mismatch=True)
training_model = model
# make prediction model
prediction_model = retinanet_bbox(model=model)
# compile model
training_model.compile(
loss={
'regression' : losses.smooth_l1(),
'classification': losses.focal()
},
optimizer=keras.optimizers.adam(lr=1e-5, clipnorm=0.001)
)
return model, training_model, prediction_model
示例13: create_categorical_samples
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def create_categorical_samples(self, n):
x, y = self.create_binary_samples(n)
return x, keras.utils.to_categorical(y)
示例14: create_samples
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def create_samples(self, n, labels=1):
x = numpy.random.uniform(0, numpy.pi/2, (n, labels))
y = numpy.random.randint(labels, size=(n, 1))
return x, keras.utils.to_categorical(y)
示例15: iris
# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def iris():
import pandas as pd
from keras.utils import to_categorical
base = 'https://raw.githubusercontent.com/autonomio/datasets/master/autonomio-datasets/'
df = pd.read_csv(base + 'iris.csv')
df['species'] = df['species'].factorize()[0]
df = df.sample(len(df))
y = to_categorical(df['species'])
x = df.iloc[:, :-1].values
y = to_categorical(df['species'])
x = df.iloc[:, :-1].values
return x, y