當前位置: 首頁>>代碼示例>>Python>>正文


Python keras.utils方法代碼示例

本文整理匯總了Python中keras.utils方法的典型用法代碼示例。如果您正苦於以下問題:Python keras.utils方法的具體用法?Python keras.utils怎麽用?Python keras.utils使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras的用法示例。


在下文中一共展示了keras.utils方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: load_and_preprocess_data_3

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def load_and_preprocess_data_3():
    # The data, shuffled and split between train and test sets:
    (X_train, y_train), (x_test, y_test) = cifar10.load_data()
    logging.debug('X_train shape: {}'.format(X_train.shape))
    logging.debug('train samples: {}'.format(X_train.shape[0]))
    logging.debug('test samples: {}'.format(x_test.shape[0]))

    # Convert class vectors to binary class matrices.
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)

    X_train = X_train.astype('float32')
    x_test = x_test.astype('float32')
    X_train /= 255
    x_test /= 255

    input_shape = X_train[0].shape
    logging.debug('input_shape {}'.format(input_shape))
    input_shape = X_train.shape[1:]
    logging.debug('input_shape {}'.format(input_shape))

    return X_train, x_test, y_train, y_test, input_shape 
開發者ID:abhishekrana,項目名稱:DeepFashion,代碼行數:24,代碼來源:cnn.py

示例2: generate_samples

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def generate_samples(self, T, g_data, num, output_file):
        '''
        Generate sample sentences to output file
        # Arguments:
            T: int, max time steps
            g_data: SeqGAN.utils.GeneratorPretrainingGenerator
            num: int, number of sentences
            output_file: str, path
        '''
        sentences=[]
        for _ in range(num // self.B + 1):
            actions = self.sampling_sentence(T)
            actions_list = actions.tolist()
            for sentence_id in actions_list:
                sentence = [g_data.id2word[action] for action in sentence_id]
                sentences.append(sentence)
        output_str = ''
        for i in range(num):
            output_str += ' '.join(sentences[i]) + '\n'
        with open(output_file, 'w', encoding='utf-8') as f:
            f.write(output_str) 
開發者ID:tyo-yo,項目名稱:SeqGAN,代碼行數:23,代碼來源:models.py

示例3: __data_generation

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def __data_generation(self,list_files,labels):
        'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
        # Initialization

        X = np.empty((len(list_files),self.dim[0],self.dim[1],self.dim[2]))
        y = np.empty((len(list_files)),dtype=int)
     #   print(X.shape,y.shape)

        # Generate data
        k = -1 
        for i,f in enumerate(list_files):
            #      print(f)
            img = get_im_cv2(f,dim=self.dim[0])
            img = pre_process(img)
            label = labels[i]
            #label = keras.utils.np_utils.to_categorical(label,self.n_classes)
            X[i,] = img
            y[i,] = label
       # print(X.shape,y.shape)    
        return X,y 
開發者ID:PacktPublishing,項目名稱:Intelligent-Projects-Using-Python,代碼行數:22,代碼來源:TransferLearning_reg.py

示例4: replace_unknown_words

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def replace_unknown_words(self, src_word_seq, trg_word_seq, hard_alignment, unk_symbol,
                              heuristic=0, mapping=None, verbose=0):
        """
        Replaces unknown words from the target sentence according to some heuristic.
        Borrowed from: https://github.com/sebastien-j/LV_groundhog/blob/master/experiments/nmt/replace_UNK.py
        :param src_word_seq: Source sentence words
        :param trg_word_seq: Hypothesis words
        :param hard_alignment: Target-Source alignments
        :param unk_symbol: Symbol in trg_word_seq to replace
        :param heuristic: Heuristic (0, 1, 2)
        :param mapping: External alignment dictionary
        :param verbose: Verbosity level
        :return: trg_word_seq with replaced unknown words
        """
        print "WARNING!: deprecated function, use utils.replace_unknown_words() instead"
        return replace_unknown_words(src_word_seq, trg_word_seq, hard_alignment, unk_symbol,
                                     heuristic=heuristic, mapping=mapping, verbose=verbose) 
開發者ID:sheffieldnlp,項目名稱:deepQuest,代碼行數:19,代碼來源:cnn_model-predictor.py

示例5: confusion_matrix

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def confusion_matrix(self, percentage=True, labeled=True):
        """Compute confusion matrix to evaluate the test accuracy of the classification"""
        if not self.classification:
            raise NotImplementedError("Confusion matrix works only when it is a classification problem")
        y_pred = self.model.predict_classes(self.X_test)[0]
        # invert from keras.utils.to_categorical
        y_test = np.array([ np.argmax(y, axis=None, out=None) for y in self.y_test[0] ])
        matrix = confusion_matrix(y_test, y_pred, labels=[self.emotions2int[e] for e in self.emotions]).astype(np.float32)
        if percentage:
            for i in range(len(matrix)):
                matrix[i] = matrix[i] / np.sum(matrix[i])
            # make it percentage
            matrix *= 100
        if labeled:
            matrix = pd.DataFrame(matrix, index=[ f"true_{e}" for e in self.emotions ],
                                    columns=[ f"predicted_{e}" for e in self.emotions ])
        return matrix 
開發者ID:x4nth055,項目名稱:emotion-recognition-using-speech,代碼行數:19,代碼來源:deep_emotion_recognition.py

示例6: model_mnist

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def model_mnist(logits=False, input_ph=None, img_rows=28, img_cols=28,
                nb_filters=64, nb_classes=10):
    warnings.warn("`utils_mnist.model_mnist` is deprecated. Switch to"
                  "`utils.cnn_model`. `utils_mnist.model_mnist` will "
                  "be removed after 2017-08-17.")
    return utils.cnn_model(logits=logits, input_ph=input_ph,
                           img_rows=img_rows, img_cols=img_cols,
                           nb_filters=nb_filters, nb_classes=nb_classes) 
開發者ID:evtimovi,項目名稱:robust_physical_perturbations,代碼行數:10,代碼來源:utils_mnist.py

示例7: get_preds

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def get_preds(model):
    size = model.input_shape[1]

    filename = os.path.join(os.path.dirname(__file__),
                            'data', '565727409_61693c5e14.jpg')

    batch = KE.preprocess_input(img_to_array(load_img(
                                filename, target_size=(size, size))))

    batch = np.expand_dims(batch, 0)

    pred = decode_predictions(model.predict(batch),
                              backend=K, utils=utils)

    return pred 
開發者ID:titu1994,項目名稱:keras-efficientnets,代碼行數:17,代碼來源:test_build.py

示例8: train

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def train(dest_train,dest_val,outdir,batch_size,n_classes,dim,shuffle,epochs,lr):
    char_to_index_dict,index_to_char_dict = create_dict_char_to_index()
    model = _model_(n_classes)
    from keras.utils import plot_model
    plot_model(model, to_file=outdir + 'model.png')
    train_generator =  DataGenerator(dest_train,char_to_index_dict,batch_size,n_classes,dim,shuffle)
    val_generator =  DataGenerator(dest_val,char_to_index_dict,batch_size,n_classes,dim,shuffle)
    model.fit_generator(train_generator,epochs=epochs,validation_data=val_generator)
    model.save(outdir + 'captcha_breaker.h5') 
開發者ID:PacktPublishing,項目名稱:Intelligent-Projects-Using-Python,代碼行數:11,代碼來源:captcha_solver.py

示例9: read_data

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def read_data(self,class_folders,path,num_class,dim,train_val='train'):
		print(train_val)
		train_X,train_y = [],[] 
		for c in class_folders:
			path_class = path + str(train_val) + '/' + str(c)
			file_list = os.listdir(path_class) 
			for f in file_list:
				img = self.get_im_cv2(path_class + '/' + f)
				img = self.pre_process(img)
				train_X.append(img)
				label = int(c.split('class')[1])
				train_y.append(int(label))
		train_y = keras.utils.np_utils.to_categorical(np.array(train_y),num_class) 
		return np.array(train_X),train_y 
開發者ID:PacktPublishing,項目名稱:Intelligent-Projects-Using-Python,代碼行數:16,代碼來源:TransferLearning.py

示例10: _to_categorical

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def _to_categorical(y, num_classes=None, reshape=True):
    """
    # copy of keras.utils.np_utils.to_categorical, but with a boolean matrix instead of float

    Converts a class vector (integers) to binary class matrix.

    E.g. for use with categorical_crossentropy.

    # Arguments
        y: class vector to be converted into a matrix
            (integers from 0 to num_classes).
        num_classes: total number of classes.

    # Returns
        A binary matrix representation of the input.
    """
    oshape = y.shape
    y = np.array(y, dtype='int').ravel()
    if not num_classes:
        num_classes = np.max(y) + 1
    n = y.shape[0]
    categorical = np.zeros((n, num_classes), bool)
    categorical[np.arange(n), y] = 1
    
    if reshape:
        categorical = np.reshape(categorical, [*oshape, num_classes])
    
    return categorical 
開發者ID:voxelmorph,項目名稱:voxelmorph,代碼行數:30,代碼來源:generators.py

示例11: get_kwargs

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def get_kwargs():
        return {
            'backend': keras.backend,
            'layers': keras.layers,
            'models': keras.models,
            'utils': keras.utils,
        } 
開發者ID:qubvel,項目名稱:classification_models,代碼行數:9,代碼來源:keras.py

示例12: create_models

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def create_models(backbone_retinanet, num_classes, weights, multi_gpu=0, freeze_backbone=False):
    """ Creates three models (model, training_model, prediction_model).

    Args
        backbone_retinanet : A function to call to create a retinanet model with a given backbone.
        num_classes        : The number of classes to train.
        weights            : The weights to load into the model.
        multi_gpu          : The number of GPUs to use for training.
        freeze_backbone    : If True, disables learning for the backbone.

    Returns
        model            : The base model. This is also the model that is saved in snapshots.
        training_model   : The training model. If multi_gpu=0, this is identical to model.
        prediction_model : The model wrapped with utility functions to perform object detection (applies regression values and performs NMS).
    """
    modifier = freeze_model if freeze_backbone else None

    # Keras recommends initialising a multi-gpu model on the CPU to ease weight sharing, and to prevent OOM errors.
    # optionally wrap in a parallel model
    if multi_gpu > 1:
        from keras.utils import multi_gpu_model
        with tf.device('/cpu:0'):
            model = model_with_weights(backbone_retinanet(num_classes, modifier=modifier), weights=weights, skip_mismatch=True)
        training_model = multi_gpu_model(model, gpus=multi_gpu)
    else:
        model          = model_with_weights(backbone_retinanet(num_classes, modifier=modifier), weights=weights, skip_mismatch=True)
        training_model = model

    # make prediction model
    prediction_model = retinanet_bbox(model=model)

    # compile model
    training_model.compile(
        loss={
            'regression'    : losses.smooth_l1(),
            'classification': losses.focal()
        },
        optimizer=keras.optimizers.adam(lr=1e-5, clipnorm=0.001)
    )

    return model, training_model, prediction_model 
開發者ID:i-pan,項目名稱:kaggle-rsna18,代碼行數:43,代碼來源:train_kaggle.py

示例13: create_categorical_samples

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def create_categorical_samples(self, n):
        x, y = self.create_binary_samples(n)
        return x, keras.utils.to_categorical(y) 
開發者ID:netrack,項目名稱:keras-metrics,代碼行數:5,代碼來源:test_metrics.py

示例14: create_samples

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def create_samples(self, n, labels=1):
        x = numpy.random.uniform(0, numpy.pi/2, (n, labels))
        y = numpy.random.randint(labels, size=(n, 1))
        return x, keras.utils.to_categorical(y) 
開發者ID:netrack,項目名稱:keras-metrics,代碼行數:6,代碼來源:test_average_recall.py

示例15: iris

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import utils [as 別名]
def iris():

    import pandas as pd
    from keras.utils import to_categorical
    base = 'https://raw.githubusercontent.com/autonomio/datasets/master/autonomio-datasets/'
    df = pd.read_csv(base + 'iris.csv')
    df['species'] = df['species'].factorize()[0]
    df = df.sample(len(df))
    y = to_categorical(df['species'])
    x = df.iloc[:, :-1].values

    y = to_categorical(df['species'])
    x = df.iloc[:, :-1].values

    return x, y 
開發者ID:autonomio,項目名稱:talos,代碼行數:17,代碼來源:datasets.py


注:本文中的keras.utils方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。