當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.get_file方法代碼示例

本文整理匯總了Python中keras.utils.get_file方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.get_file方法的具體用法?Python utils.get_file怎麽用?Python utils.get_file使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.utils的用法示例。


在下文中一共展示了utils.get_file方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_model_by_name

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import get_file [as 別名]
def get_model_by_name(model_name, input_shape, classes=1000, pretrained=False):
    """Get an EfficientNet model by its name.
    """
    blocks_args, global_params = get_efficientnet_params(model_name, override_params={'num_classes': classes})
    model = _efficientnet(input_shape, blocks_args, global_params)

    try:
        if pretrained:
            weights = IMAGENET_WEIGHTS[model_name]
            weights_path = get_file(
                weights['name'],
                weights['url'],
                cache_subdir='models',
                md5_hash=weights['md5'],
            )
            model.load_weights(weights_path)
    except KeyError as e:
        print("NOTE: Currently model {} doesn't have pretrained weights, therefore a model with randomly initialized"
              " weights is returned.".format(e))

    return model 
開發者ID:zhoudaxia233,項目名稱:EfficientUnet,代碼行數:23,代碼來源:efficientnet.py

示例2: download_imagenet

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import get_file [as 別名]
def download_imagenet(self):
        """ Downloads ImageNet weights and returns path to weights file.
        Weights can be downloaded at https://github.com/fizyr/keras-mod'\
            'els/releases .
        """
        if self.backbone == 'vgg16':
            resource = keras.applications.vgg16.WEIGHTS_PATH_NO_TOP
            checksum = '6d6bbae143d832006294945121d1f1fc'
        elif self.backbone == 'vgg19':
            resource = keras.applications.vgg19.WEIGHTS_PATH_NO_TOP
            checksum = '253f8cb515780f3b799900260a226db6'
        else:
            raise ValueError(
                "Backbone '{}' not recognized.".format(
                    self.backbone))

        return get_file(
            '{}_weights_tf_dim_ordering_tf_kernels_notop.h5'.format(
                self.backbone),
            resource,
            cache_subdir='models',
            file_hash=checksum
        ) 
開發者ID:advboxes,項目名稱:perceptron-benchmark,代碼行數:25,代碼來源:vgg.py

示例3: download_imagenet

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import get_file [as 別名]
def download_imagenet(self):
        """ Downloads ImageNet weights and returns path to weights file.
        """
        resnet_filename = 'ResNet-{}-model.keras.h5'
        resnet_resource = 'https://github.com/fizyr/keras-models'\
        '/releases/download/v0.0.1/{}'.format(
            resnet_filename)
        depth = int(self.backbone.replace('resnet', ''))

        filename = resnet_filename.format(depth)
        resource = resnet_resource.format(depth)
        if depth == 50:
            checksum = '3e9f4e4f77bbe2c9bec13b53ee1c2319'
        elif depth == 101:
            checksum = '05dc86924389e5b401a9ea0348a3213c'
        elif depth == 152:
            checksum = '6ee11ef2b135592f8031058820bb9e71'

        return get_file(
            filename,
            resource,
            cache_subdir='models',
            md5_hash=checksum
        ) 
開發者ID:advboxes,項目名稱:perceptron-benchmark,代碼行數:26,代碼來源:resnet.py

示例4: download_imagenet

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import get_file [as 別名]
def download_imagenet(self):
        """ Download pre-trained weights for the specified backbone name.
        This name is in the format {backbone}_weights_tf_dim_ordering_tf_
        kernels_notop
        where backbone is the densenet + number of layers (e.g. densenet121).
        For more info check the explanation from the keras densenet script 
        itself:
            https://github.com/keras-team/keras/blob/master/keras/applications
            /densenet.py
        """
        origin = 'https://github.com/fchollet/deep-learning-models/releases/'\
            'download/v0.8/'
        file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5'

        # load weights
        if keras.backend.image_data_format() == 'channels_first':
            raise ValueError(
                'Weights for "channels_first" format are not available.')

        weights_url = origin + file_name.format(self.backbone)
        return get_file(file_name.format(self.backbone),
                        weights_url, cache_subdir='models') 
開發者ID:advboxes,項目名稱:perceptron-benchmark,代碼行數:24,代碼來源:densenet.py

示例5: download_imagenet

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import get_file [as 別名]
def download_imagenet(self):
        """ Downloads ImageNet weights and returns path to weights file.
        Weights can be downloaded at https://github.com/fizyr/keras-models/releases .
        """
        if self.backbone == 'vgg16':
            resource = keras.applications.vgg16.vgg16.WEIGHTS_PATH_NO_TOP
            checksum = '6d6bbae143d832006294945121d1f1fc'
        elif self.backbone == 'vgg19':
            resource = keras.applications.vgg19.vgg19.WEIGHTS_PATH_NO_TOP
            checksum = '253f8cb515780f3b799900260a226db6'
        else:
            raise ValueError("Backbone '{}' not recognized.".format(self.backbone))

        return get_file(
            '{}_weights_tf_dim_ordering_tf_kernels_notop.h5'.format(self.backbone),
            resource,
            cache_subdir='models',
            file_hash=checksum
        ) 
開發者ID:weecology,項目名稱:DeepForest,代碼行數:21,代碼來源:vgg.py

示例6: download_imagenet

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import get_file [as 別名]
def download_imagenet(self):
        """ Downloads ImageNet weights and returns path to weights file.
        """
        resnet_filename = 'ResNet-{}-model.keras.h5'
        resnet_resource = 'https://github.com/fizyr/keras-models/releases/download/v0.0.1/{}'.format(resnet_filename)
        depth = int(self.backbone.replace('resnet', ''))

        filename = resnet_filename.format(depth)
        resource = resnet_resource.format(depth)
        if depth == 50:
            checksum = '3e9f4e4f77bbe2c9bec13b53ee1c2319'
        elif depth == 101:
            checksum = '05dc86924389e5b401a9ea0348a3213c'
        elif depth == 152:
            checksum = '6ee11ef2b135592f8031058820bb9e71'

        return get_file(
            filename,
            resource,
            cache_subdir='models',
            md5_hash=checksum
        ) 
開發者ID:weecology,項目名稱:DeepForest,代碼行數:24,代碼來源:resnet.py

示例7: download_imagenet

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import get_file [as 別名]
def download_imagenet(self):
        """ Download pre-trained weights for the specified backbone name.
        This name is in the format {backbone}_weights_tf_dim_ordering_tf_kernels_notop
        where backbone is the densenet + number of layers (e.g. densenet121).
        For more info check the explanation from the keras densenet script itself:
            https://github.com/keras-team/keras/blob/master/keras/applications/densenet.py
        """
        origin    = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/'
        file_name = '{}_weights_tf_dim_ordering_tf_kernels_notop.h5'

        # load weights
        if keras.backend.image_data_format() == 'channels_first':
            raise ValueError('Weights for "channels_first" format are not available.')

        weights_url = origin + file_name.format(self.backbone)
        return get_file(file_name.format(self.backbone), weights_url, cache_subdir='models') 
開發者ID:weecology,項目名稱:DeepForest,代碼行數:18,代碼來源:densenet.py

示例8: download_imagenet

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import get_file [as 別名]
def download_imagenet(self):
        """ Download pre-trained weights for the specified backbone name.
        This name is in the format mobilenet{rows}_{alpha} where rows is the
        imagenet shape dimension and 'alpha' controls the width of the network.
        For more info check the explanation from the keras mobilenet script itself.
        """

        alpha = float(self.backbone.split('_')[1])
        rows = int(self.backbone.split('_')[0].replace('mobilenet', ''))

        # load weights
        if keras.backend.image_data_format() == 'channels_first':
            raise ValueError('Weights for "channels_last" format '
                             'are not available.')
	
	BASE_WEIGHT_PATH = 'https://github.com/JonathanCMitchell/mobilenet_v2_keras/releases/download/v1.1/'
        model_name = 'mobilenet_v2_weights_tf_dim_ordering_tf_kernels_{}_{}_no_top.h5'.format(alpha, rows)
        weights_url = BASE_WEIGHT_PATH + model_name
        weights_path = get_file(model_name, weights_url, cache_subdir='models')

        return weights_path 
開發者ID:i-pan,項目名稱:kaggle-rsna18,代碼行數:23,代碼來源:mobilenetv2.py

示例9: download_imagenet

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import get_file [as 別名]
def download_imagenet(self):
        """ Downloads ImageNet weights and returns path to weights file.
        Weights can be downloaded at https://github.com/fizyr/keras-models/releases .
        """
        if self.backbone == 'vgg16':
            resource = keras.applications.vgg16.WEIGHTS_PATH_NO_TOP
            checksum = '6d6bbae143d832006294945121d1f1fc'
        elif self.backbone == 'vgg19':
            resource = keras.applications.vgg19.WEIGHTS_PATH_NO_TOP
            checksum = '253f8cb515780f3b799900260a226db6'
        else:
            raise ValueError("Backbone '{}' not recognized.".format(self.backbone))

        return get_file(
            '{}_weights_tf_dim_ordering_tf_kernels_notop.h5'.format(self.backbone),
            resource,
            cache_subdir='models',
            file_hash=checksum
        ) 
開發者ID:i-pan,項目名稱:kaggle-rsna18,代碼行數:21,代碼來源:vgg.py

示例10: load_model_weights

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import get_file [as 別名]
def load_model_weights(weights_collection, model, dataset, classes, include_top):
    weights = find_weights(weights_collection, model.name, dataset, include_top)

    if weights:
        weights = weights[0]

        if include_top and weights['classes'] != classes:
            raise ValueError('If using `weights` and `include_top`'
                             ' as true, `classes` should be {}'.format(weights['classes']))

        weights_path = get_file(weights['name'],
                                weights['url'],
                                cache_subdir='/project/backbones_weights',
                                md5_hash=weights['md5'])

        model.load_weights(weights_path)

    else:
        raise ValueError('There is no weights for such configuration: ' +
                         'model = {}, dataset = {}, '.format(model.name, dataset) +
                         'classes = {}, include_top = {}.'.format(classes, include_top)) 
開發者ID:SpaceNetChallenge,項目名稱:SpaceNet_Off_Nadir_Solutions,代碼行數:23,代碼來源:utils.py

示例11: download_imagenet

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import get_file [as 別名]
def download_imagenet(self):
        """ Downloads ImageNet weights and returns path to weights file.
        Weights can be downloaded at https://github.com/fizyr/keras-models/releases .
        """
        if self.backbone == 'vgg16':
            resource = keras.applications.vgg16.vgg16.WEIGHTS_PATH_NO_TOP
            checksum = '6d6bbae143d832006294945121d1f1fc'
        elif 'vgg-max' in self.backbone:
            resource = keras.applications.vgg16.vgg16.WEIGHTS_PATH_NO_TOP
            checksum = '6d6bbae143d832006294945121d1f1fc'
        elif self.backbone == 'vgg19':
            resource = keras.applications.vgg19.vgg19.WEIGHTS_PATH_NO_TOP
            checksum = '253f8cb515780f3b799900260a226db6'
        else:
            raise ValueError("Backbone '{}' not recognized.".format(self.backbone))

        return get_file(
            '{}_weights_tf_dim_ordering_tf_kernels_notop.h5'.format(self.backbone),
            resource,
            cache_subdir='models',
            file_hash=checksum
        ) 
開發者ID:TUMFTM,項目名稱:CameraRadarFusionNet,代碼行數:24,代碼來源:vgg.py

示例12: load_model_weights

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import get_file [as 別名]
def load_model_weights(weights_collection, model, dataset, classes, include_top):
    weights = find_weights(weights_collection, model.name, dataset, include_top)

    if weights:
        weights = weights[0]

        if include_top and weights['classes'] != classes:
            raise ValueError('If using `weights` and `include_top`'
                             ' as true, `classes` should be {}'.format(weights['classes']))

        weights_path = get_file(weights['name'],
                                weights['url'],
                                cache_subdir='models',
                                md5_hash=weights['md5'])

        model.load_weights(weights_path)

    else:
        raise ValueError('There is no weights for such configuration: ' +
                         'model = {}, dataset = {}, '.format(model.name, dataset) +
                         'classes = {}, include_top = {}.'.format(classes, include_top)) 
開發者ID:pubgeo,項目名稱:dfc2019,代碼行數:23,代碼來源:utils.py

示例13: download_resnet_imagenet

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import get_file [as 別名]
def download_resnet_imagenet(v):
    v = int(v.replace('resnet', ''))

    filename = resnet_filename.format(v)
    resource = resnet_resource.format(v)
    if v == 50:
        checksum = '3e9f4e4f77bbe2c9bec13b53ee1c2319'
    elif v == 101:
        checksum = '05dc86924389e5b401a9ea0348a3213c'
    elif v == 152:
        checksum = '6ee11ef2b135592f8031058820bb9e71'

    return get_file(
        filename,
        resource,
        cache_subdir='models',
        md5_hash=checksum
    ) 
開發者ID:selimsef,項目名稱:dsb2018_topcoders,代碼行數:20,代碼來源:unets.py

示例14: __init__

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import get_file [as 別名]
def __init__(self):
        logger.info('Loading Deeplab')

        local_path = os.path.join(config.WEIGHT_PATH, config.DEEPLAB_FILENAME)
        self.weights_path = get_file(os.path.abspath(local_path), config.DEEPLAB_URL, cache_subdir='models')

        self.graph = tf.Graph()
        with self.graph.as_default():
            self.image_placeholder = tf.placeholder(tf.float32, shape=(None, None, None, 3))
            self.net = DeepLabResNetModel({'data': self.image_placeholder}, is_training=False,
                                          num_classes=self.NUM_CLASSES)

            restore_var = tf.global_variables()

            # Set up TF session and initialize variables.
            config_tf = tf.ConfigProto()
            config_tf.gpu_options.allow_growth = True
            self.sess = tf.Session(config=config_tf)
            init = tf.global_variables_initializer()

            self.sess.run(init)

            # Load weights.
            loader = tf.train.Saver(var_list=restore_var)
            loader.restore(self.sess, self.weights_path) 
開發者ID:EliotAndres,項目名稱:pretrained.ml,代碼行數:27,代碼來源:models.py

示例15: download_imagenet

# 需要導入模塊: from keras import utils [as 別名]
# 或者: from keras.utils import get_file [as 別名]
def download_imagenet(self):
        """ Download pre-trained weights for the specified backbone name.
        This name is in the format mobilenet{rows}_{alpha} where rows is the
        imagenet shape dimension and 'alpha' controls the width of the 
        network.
        For more info check the explanation from the keras mobilenet script 
        itself.
        """

        alpha = float(self.backbone.split('_')[1])
        rows = int(self.backbone.split('_')[0].replace('mobilenet', ''))

        # load weights
        if keras.backend.image_data_format() == 'channels_first':
            raise ValueError('Weights for "channels_last" format '
                             'are not available.')
        if alpha == 1.0:
            alpha_text = '1_0'
        elif alpha == 0.75:
            alpha_text = '7_5'
        elif alpha == 0.50:
            alpha_text = '5_0'
        else:
            alpha_text = '2_5'

        model_name = 'mobilenet_{}_{}_tf_no_top.h5'.format(alpha_text, rows)
        weights_url = mobilenet.mobilenet.BASE_WEIGHT_PATH + model_name
        weights_path = get_file(model_name, weights_url, 
                                cache_subdir='models')

        return weights_path 
開發者ID:advboxes,項目名稱:perceptron-benchmark,代碼行數:33,代碼來源:mobilenet.py


注:本文中的keras.utils.get_file方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。