本文整理匯總了Python中keras.utils.generic_utils.CustomObjectScope方法的典型用法代碼示例。如果您正苦於以下問題:Python generic_utils.CustomObjectScope方法的具體用法?Python generic_utils.CustomObjectScope怎麽用?Python generic_utils.CustomObjectScope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.utils.generic_utils
的用法示例。
在下文中一共展示了generic_utils.CustomObjectScope方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from keras.utils import generic_utils [as 別名]
# 或者: from keras.utils.generic_utils import CustomObjectScope [as 別名]
def __init__(self, nb_classes, resnet_layers, input_shape, weights):
self.input_shape = input_shape
self.num_classes = nb_classes
json_path = join("weights", "keras", weights + ".json")
h5_path = join("weights", "keras", weights + ".h5")
if 'pspnet' in weights:
if os.path.isfile(json_path) and os.path.isfile(h5_path):
print("Keras model & weights found, loading...")
with CustomObjectScope({'Interp': layers.Interp}):
with open(json_path) as file_handle:
self.model = model_from_json(file_handle.read())
self.model.load_weights(h5_path)
else:
print("No Keras model & weights found, import from npy weights.")
self.model = layers.build_pspnet(nb_classes=nb_classes,
resnet_layers=resnet_layers,
input_shape=self.input_shape)
self.set_npy_weights(weights)
else:
print('Load pre-trained weights')
self.model = load_model(weights)
示例2: initialize_celeb
# 需要導入模塊: from keras.utils import generic_utils [as 別名]
# 或者: from keras.utils.generic_utils import CustomObjectScope [as 別名]
def initialize_celeb(self):
print("Initializing celebrity network...")
with CustomObjectScope({'relu6': keras.layers.ReLU(6.),
'DepthwiseConv2D': keras.layers.DepthwiseConv2D,
'lifted_struct_loss': lifted_struct_loss,
'triplet_loss': triplet_loss}):
self.siameseNet = keras.models.load_model(os.path.join(self.siamesepath, "feature_model.h5"))
self.siameseNet._make_predict_function()
##### Read celebrity features
celebrity_features = self.siamesepath + os.sep + "features_" + self.celeb_dataset + ".h5"
print("Reading celebrity data from {}...".format(celebrity_features))
with h5py.File(celebrity_features, "r") as h5:
celeb_features = np.array(h5["features"]).astype(np.float32)
self.path_ends = list(h5["path_ends"])
self.celeb_files = [os.path.join(self.visualization_path, s.decode("utf-8")) for s in self.path_ends]
print("Building index...")
self.celeb_index = faiss.IndexFlatL2(celeb_features.shape[1])
self.celeb_index.add(celeb_features)
示例3: run_model
# 需要導入模塊: from keras.utils import generic_utils [as 別名]
# 或者: from keras.utils.generic_utils import CustomObjectScope [as 別名]
def run_model(i,X_test):
score = np.zeros((5, len(X_test)))
with CustomObjectScope({'Attention': Attention}):
model=load_model(curDir+ 'model/binding_model' + str(i+1)+ '.hdf5')
score[i,:] =np.squeeze(model.predict_proba(X_test))
return score[i,:]
示例4: run_model1
# 需要導入模塊: from keras.utils import generic_utils [as 別名]
# 或者: from keras.utils.generic_utils import CustomObjectScope [as 別名]
def run_model1(i,X_test):
score1 = np.zeros((5, len(X_test)))
with CustomObjectScope({'Attention': Attention}):
model1=load_model(curDir+ 'model/immunogenicity_model' + str(i+1)+ '.hdf5')
score1[i,:]=np.squeeze(model1.predict_proba(X_test))
return score1[i,:]
示例5: load_model
# 需要導入模塊: from keras.utils import generic_utils [as 別名]
# 或者: from keras.utils.generic_utils import CustomObjectScope [as 別名]
def load_model(self):
global Graph # multiprocess-able
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.3
set_session(tf.Session(config=config))
# model.99-0.98.h5
files = glob.glob('models/{}/model.*.h5'.format(self.model_name))
if len(files) == 0:
print('Trained model not found from "models/{}/model.*.h5"'.format(self.model_name))
print('Building new model because model file not found...')
return self.build_model(self.kernel, self.stride)
last_file = max(files, key=os.path.getctime)
file_name = last_file.replace('\\', '/').split('/')[-1].replace('model.', '').replace('.h5', '')
self.epoch = int(file_name.split('-')[0])
acc = float(file_name.split('-')[1])
with CustomObjectScope({'relu6': tf.nn.relu6, 'DepthwiseConv2D': keras.layers.DepthwiseConv2D, 'tf': tf}):
model = load_model(last_file)
model.summary()
Graph = tf.get_default_graph()
print('Loaded last model - {}, epoch: {}, acc: {}'.format(last_file, self.epoch, acc))
return model
示例6: __init__
# 需要導入模塊: from keras.utils import generic_utils [as 別名]
# 或者: from keras.utils.generic_utils import CustomObjectScope [as 別名]
def __init__(self, parent, params):
print("Initializing recognition thread...")
threading.Thread.__init__(self)
self.parent = parent
##### Initialize aligners for face alignment.
aligner_path = params.get("recognition", "aligner")
aligner_targets_path = params.get("recognition", "aligner_targets")
self.aligner = keras.models.load_model(aligner_path)
self.aligner._make_predict_function()
self.aligner_input_shape = (self.aligner.input_shape[2], self.aligner.input_shape[1])
# load targets
aligner_targets = np.loadtxt(aligner_targets_path)
left_eye = (aligner_targets[36] + aligner_targets[39]) / 2
right_eye = (aligner_targets[42] + aligner_targets[45]) / 2
nose = aligner_targets[30]
left_mouth = aligner_targets[48]
right_mouth = aligner_targets[54]
# Dlib order
#self.shape_targets = np.stack((left_eye, left_mouth, nose, right_eye, right_mouth))
# CNN order
self.shape_targets = np.stack((left_eye, right_eye, nose, left_mouth, right_mouth))
##### Initialize networks for Age, Gender and Expression
##### 1. AGE, GENDER, SMILE MULTITASK
print("Initializing multitask network...")
multitaskpath = params.get("recognition", "multitask_folder")
with CustomObjectScope({'relu6': keras.layers.ReLU(6.),
'DepthwiseConv2D': keras.layers.DepthwiseConv2D}):
self.multiTaskNet = keras.models.load_model(os.path.join(multitaskpath, 'model.h5'))
self.multiTaskNet._make_predict_function()
##### Read class names
self.expressions = {int(key): val for key, val in params['expressions'].items()} # convert string key to int
self.minDetections = int(params.get("recognition", "mindetections"))
##### 2. CELEBRITY
self.siamesepaths = params['celebmodels']
self.siamesepath = self.siamesepaths["0"]
self.celeb_dataset = params.get("recognition", "celeb_dataset")
self.visualization_path = params.get("recognition", "visualization_path")
self.initialize_celeb()
# Starting the thread
self.switching_model = False
self.recognition_running = False
print("Recognition thread started...")