本文整理匯總了Python中keras.utils.data_utils.get_file方法的典型用法代碼示例。如果您正苦於以下問題:Python data_utils.get_file方法的具體用法?Python data_utils.get_file怎麽用?Python data_utils.get_file使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.utils.data_utils
的用法示例。
在下文中一共展示了data_utils.get_file方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_data
# 需要導入模塊: from keras.utils import data_utils [as 別名]
# 或者: from keras.utils.data_utils import get_file [as 別名]
def load_data(path='conll2000.zip', min_freq=2):
path = get_file(path,
origin='https://raw.githubusercontent.com/nltk'
'/nltk_data/gh-pages/packages/corpora/conll2000.zip')
print(path)
archive = ZipFile(path, 'r')
train = _parse_data(archive.open('conll2000/train.txt'))
test = _parse_data(archive.open('conll2000/test.txt'))
archive.close()
word_counts = Counter(row[0].lower() for sample in train for row in sample)
vocab = ['<pad>', '<unk>']
vocab += [w for w, f in iter(word_counts.items()) if f >= min_freq]
# in alphabetic order
pos_tags = sorted(list(set(row[1] for sample in train + test for row in sample)))
# in alphabetic order
chunk_tags = sorted(list(set(row[2] for sample in train + test for row in sample)))
train = _process_data(train, vocab, pos_tags, chunk_tags)
test = _process_data(test, vocab, pos_tags, chunk_tags)
return train, test, (vocab, pos_tags, chunk_tags)
示例2: decode_predictions
# 需要導入模塊: from keras.utils import data_utils [as 別名]
# 或者: from keras.utils.data_utils import get_file [as 別名]
def decode_predictions(preds, top=5):
global CLASS_INDEX
if len(preds.shape) != 2 or preds.shape[1] != 1000:
raise ValueError('`decode_predictions` expects '
'a batch of predictions '
'(i.e. a 2D array of shape (samples, 1000)). '
'Found array with shape: ' + str(preds.shape))
if CLASS_INDEX is None:
fpath = get_file('imagenet_class_index.json',
CLASS_INDEX_PATH,
cache_subdir='models')
CLASS_INDEX = json.load(open(fpath))
results = []
for pred in preds:
top_indices = pred.argsort()[-top:][::-1]
result = [tuple(CLASS_INDEX[str(i)]) + (pred[i],) for i in top_indices]
results.append(result)
return results
示例3: check_mpii_dataset
# 需要導入模塊: from keras.utils import data_utils [as 別名]
# 或者: from keras.utils.data_utils import get_file [as 別名]
def check_mpii_dataset():
version = 'v0.1'
try:
mpii_path = os.path.join(os.getcwd(), 'datasets/MPII/')
annot_path = get_file(mpii_path + 'annotations.mat',
ORIGIN + version + '/mpii_annotations.mat',
md5_hash='cc62b1bb855bf4866d19bc0637526930')
if os.path.isdir(mpii_path + 'images') is False:
raise Exception('MPII dataset (images) not found! '
'You must download it by yourself from '
'http://human-pose.mpi-inf.mpg.de')
except:
sys.stderr.write('Error checking MPII dataset!\n')
raise
示例4: check_h36m_dataset
# 需要導入模塊: from keras.utils import data_utils [as 別名]
# 或者: from keras.utils.data_utils import get_file [as 別名]
def check_h36m_dataset():
version = 'v0.2'
try:
h36m_path = os.path.join(os.getcwd(), 'datasets/Human3.6M/')
annot_path = get_file(h36m_path + 'annotations.mat',
ORIGIN + version + '/h36m_annotations.mat',
md5_hash='4067d52db61737fbebdec850238d87dd')
if os.path.isdir(h36m_path + 'images') is False:
raise Exception('Human3.6M dataset (images) not found! '
'You must download it by yourself from '
'http://vision.imar.ro/human3.6m '
'and extract the video files!')
except:
sys.stderr.write('Error checking Human3.6M dataset!\n')
raise
示例5: check_pennaction_dataset
# 需要導入模塊: from keras.utils import data_utils [as 別名]
# 或者: from keras.utils.data_utils import get_file [as 別名]
def check_pennaction_dataset():
version = 'v0.3'
try:
penn_path = os.path.join(os.getcwd(), 'datasets/PennAction/')
annot_path = get_file(penn_path + 'annotations.mat',
ORIGIN + version + '/penn_annotations.mat',
md5_hash='b37a2e72c0ba308bd7ad476bc2aa4d33')
bbox_path = get_file(penn_path + 'penn_pred_bboxes_16f.json',
ORIGIN + version + '/penn_pred_bboxes_16f.json',
md5_hash='30b124a919185cb031b928bc6154fa9b')
if os.path.isdir(penn_path + 'frames') is False:
raise Exception('PennAction dataset (frames) not found! '
'You must download it by yourself from '
'http://dreamdragon.github.io/PennAction')
except:
sys.stderr.write('Error checking PennAction dataset!\n')
raise
示例6: decode_imagenet_predictions
# 需要導入模塊: from keras.utils import data_utils [as 別名]
# 或者: from keras.utils.data_utils import get_file [as 別名]
def decode_imagenet_predictions(preds, top=5):
global CLASS_INDEX
if len(preds.shape) != 2 or preds.shape[1] != 1000:
raise ValueError('`decode_predictions` expects '
'a batch of predictions '
'(i.e. a 2D array of shape (samples, 1000)). '
'Found array with shape: ' + str(preds.shape))
if CLASS_INDEX is None:
fpath = get_file('imagenet_class_index.json',
CLASS_INDEX_PATH,
cache_subdir='models')
CLASS_INDEX = json.load(open(fpath))
results = []
for pred in preds:
top_indices = pred.argsort()[-top:][::-1]
result = [tuple(CLASS_INDEX[str(i)]) + (pred[i],) for i in top_indices]
results.append(result)
return results
示例7: get_imagenet_weights
# 需要導入模塊: from keras.utils import data_utils [as 別名]
# 或者: from keras.utils.data_utils import get_file [as 別名]
def get_imagenet_weights(self):
"""Downloads ImageNet trained weights from Keras.
Returns path to weights file.
"""
from keras.utils.data_utils import get_file
TF_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/'\
'releases/download/v0.2/'\
'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'
weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
TF_WEIGHTS_PATH_NO_TOP,
cache_subdir='models',
md5_hash='a268eb855778b3df3c7506639542a6af')
return weights_path
示例8: decode_predictions
# 需要導入模塊: from keras.utils import data_utils [as 別名]
# 或者: from keras.utils.data_utils import get_file [as 別名]
def decode_predictions(preds):
global CLASS_INDEX
assert len(preds.shape) == 2 and preds.shape[1] == 1000
if CLASS_INDEX is None:
fpath = get_file('imagenet_class_index.json',
CLASS_INDEX_PATH,
cache_subdir='models')
CLASS_INDEX = json.load(open(fpath))
indices = np.argmax(preds, axis=-1)
results = []
for i in indices:
results.append(CLASS_INDEX[str(i)])
return results
示例9: get_imagenet_weights
# 需要導入模塊: from keras.utils import data_utils [as 別名]
# 或者: from keras.utils.data_utils import get_file [as 別名]
def get_imagenet_weights(self):
"""Downloads ImageNet trained weights from Keras.
Returns path to weights file.
"""
from keras.utils.data_utils import get_file
TF_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/' \
'releases/download/v0.2/' \
'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'
weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
TF_WEIGHTS_PATH_NO_TOP,
cache_subdir='models',
md5_hash='a268eb855778b3df3c7506639542a6af')
return weights_path
示例10: get_file
# 需要導入模塊: from keras.utils import data_utils [as 別名]
# 或者: from keras.utils.data_utils import get_file [as 別名]
def get_file(model_weights: ModelWeights):
return gf(model_weights.name, model_weights.path, cache_subdir=RECURRENT_GAZE_DIR)
示例11: __init__
# 需要導入模塊: from keras.utils import data_utils [as 別名]
# 或者: from keras.utils.data_utils import get_file [as 別名]
def __init__(self, inputs, blocks, weights=None,
trainable=True, name='encoder'):
inverse_pyramid = []
# convolutional block
conv_blocks = blocks[:-1]
for i, block in enumerate(conv_blocks):
if i == 0:
x = block(inputs)
inverse_pyramid.append(x)
elif i < len(conv_blocks) - 1:
x = block(x)
inverse_pyramid.append(x)
else:
x = block(x)
# fully convolutional block
fc_block = blocks[-1]
y = fc_block(x)
inverse_pyramid.append(y)
outputs = list(reversed(inverse_pyramid))
super(Encoder, self).__init__(
inputs=inputs, outputs=outputs)
# load pre-trained weights
if weights is not None:
weights_path = get_file(
'{}_weights_tf_dim_ordering_tf_kernels.h5'.format(name),
weights,
cache_subdir='models')
layer_names = load_weights(self, weights_path)
if K.image_data_format() == 'channels_first':
layer_utils.convert_all_kernels_in_model(self)
# Freezing basenet weights
if trainable is False:
for layer in self.layers:
if layer.name in layer_names:
layer.trainable = False
示例12: get_file
# 需要導入模塊: from keras.utils import data_utils [as 別名]
# 或者: from keras.utils.data_utils import get_file [as 別名]
def get_file(uri, extract=False):
if '://' not in uri:
return uri
# uri = 'file://' + uri
fname = uri.split('/')[-1]
local_path = keras_get_file(
fname, uri,
extract=extract,
cache_subdir='models')
return local_path
示例13: load_data
# 需要導入模塊: from keras.utils import data_utils [as 別名]
# 或者: from keras.utils.data_utils import get_file [as 別名]
def load_data(data_file, url):
"""loads the data from the gzip pickled files, and converts to numpy arrays"""
print('loading data ...')
path = get_file(data_file, origin=url)
f = gzip.open(path, 'rb')
train_set, valid_set, test_set = load_pickle(f)
f.close()
train_set_x, train_set_y = make_numpy_array(train_set)
valid_set_x, valid_set_y = make_numpy_array(valid_set)
test_set_x, test_set_y = make_numpy_array(test_set)
return [(train_set_x, train_set_y), (valid_set_x, valid_set_y), (test_set_x, test_set_y)]
示例14: get_densenet_weights_path
# 需要導入模塊: from keras.utils import data_utils [as 別名]
# 或者: from keras.utils.data_utils import get_file [as 別名]
def get_densenet_weights_path(dataset_name="CIFAR-10", include_top=True):
assert dataset_name == "CIFAR-10"
if include_top:
weights_path = get_file('densenet_40_12_tf_dim_ordering_tf_kernels.h5',
TF_WEIGHTS_PATH,
cache_subdir='models')
else:
weights_path = get_file('densenet_40_12_tf_dim_ordering_tf_kernels_no_top.h5',
TF_WEIGHTS_PATH_NO_TOP,
cache_subdir='models')
return weights_path
示例15: test_data_utils
# 需要導入模塊: from keras.utils import data_utils [as 別名]
# 或者: from keras.utils.data_utils import get_file [as 別名]
def test_data_utils(in_tmpdir):
"""Tests get_file from a url, plus extraction and validation.
"""
dirname = 'data_utils'
with open('test.txt', 'w') as text_file:
text_file.write('Float like a butterfly, sting like a bee.')
with tarfile.open('test.tar.gz', 'w:gz') as tar_file:
tar_file.add('test.txt')
with zipfile.ZipFile('test.zip', 'w') as zip_file:
zip_file.write('test.txt')
origin = urljoin('file://', pathname2url(os.path.abspath('test.tar.gz')))
path = get_file(dirname, origin, untar=True)
filepath = path + '.tar.gz'
hashval_sha256 = _hash_file(filepath)
hashval_md5 = _hash_file(filepath, algorithm='md5')
path = get_file(dirname, origin, md5_hash=hashval_md5, untar=True)
path = get_file(filepath, origin, file_hash=hashval_sha256, extract=True)
assert os.path.exists(filepath)
assert validate_file(filepath, hashval_sha256)
assert validate_file(filepath, hashval_md5)
os.remove(filepath)
os.remove('test.tar.gz')
origin = urljoin('file://', pathname2url(os.path.abspath('test.zip')))
hashval_sha256 = _hash_file('test.zip')
hashval_md5 = _hash_file('test.zip', algorithm='md5')
path = get_file(dirname, origin, md5_hash=hashval_md5, extract=True)
path = get_file(dirname, origin, file_hash=hashval_sha256, extract=True)
assert os.path.exists(path)
assert validate_file(path, hashval_sha256)
assert validate_file(path, hashval_md5)
os.remove(path)
os.remove('test.txt')
os.remove('test.zip')