當前位置: 首頁>>代碼示例>>Python>>正文


Python keras.regularizers方法代碼示例

本文整理匯總了Python中keras.regularizers方法的典型用法代碼示例。如果您正苦於以下問題:Python keras.regularizers方法的具體用法?Python keras.regularizers怎麽用?Python keras.regularizers使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras的用法示例。


在下文中一共展示了keras.regularizers方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import regularizers [as 別名]
def build(self):
        try:
            self.input_ndim = len(self.previous.input_shape)
        except AttributeError:
            self.input_ndim = len(self.input_shape)

        self.layer.set_input_shape((None, ) + self.input_shape[2:])

        if hasattr(self.layer, 'regularizers'):
            self.regularizers = self.layer.regularizers

        if hasattr(self.layer, 'constraints'):
            self.constraints = self.layer.constraints
        
        if hasattr(self.layer, 'trainable_weights'):
            self.trainable_weights = self.layer.trainable_weights

            if self.initial_weights is not None:
                self.layer.set_weights(self.initial_weights)
                del self.initial_weights 
開發者ID:textclf,項目名稱:fancy-cnn,代碼行數:22,代碼來源:timedistributed.py

示例2: __init__

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import regularizers [as 別名]
def __init__(self, h, output_dim,
                 init='glorot_uniform', **kwargs):
        self.init = initializations.get(init)
        self.h = h
        self.output_dim = output_dim
        #removing the regularizers and the dropout
        super(AttenLayer, self).__init__(**kwargs)
        # this seems necessary in order to accept 3 input dimensions
        # (samples, timesteps, features)
        self.input_spec=[InputSpec(ndim=3)] 
開發者ID:wentaozhu,項目名稱:recurrent-attention-for-QA-SQUAD-based-on-keras,代碼行數:12,代碼來源:attentionlayer.py

示例3: feed_forward_net

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import regularizers [as 別名]
def feed_forward_net(input, output, hidden_layers=[64, 64], activations='relu',
                     dropout_rate=0., l2=0., constrain_norm=False):
    '''
    Helper function for building a Keras feed forward network.

    input:  Keras Input object appropriate for the data. e.g. input=Input(shape=(20,))
    output: Function representing final layer for the network that maps from the last
            hidden layer to output.
            e.g. if output = Dense(10, activation='softmax') if we're doing 10 class
            classification or output = Dense(1, activation='linear') if we're doing
            regression.
    '''
    state = input
    if isinstance(activations, str):
        activations = [activations] * len(hidden_layers)
    
    for h, a in zip(hidden_layers, activations):
        if l2 > 0.:
            w_reg = keras.regularizers.l2(l2)
        else:
            w_reg = None
        const = maxnorm(2) if constrain_norm else  None
        state = Dense(h, activation=a, kernel_regularizer=w_reg, kernel_constraint=const)(state)
        if dropout_rate > 0.:
            state = Dropout(dropout_rate)(state)
    return output(state) 
開發者ID:jhartford,項目名稱:DeepIV,代碼行數:28,代碼來源:architectures.py


注:本文中的keras.regularizers方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。