當前位置: 首頁>>代碼示例>>Python>>正文


Python keras.preprocessing方法代碼示例

本文整理匯總了Python中keras.preprocessing方法的典型用法代碼示例。如果您正苦於以下問題:Python keras.preprocessing方法的具體用法?Python keras.preprocessing怎麽用?Python keras.preprocessing使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras的用法示例。


在下文中一共展示了keras.preprocessing方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: clean_module_name

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import preprocessing [as 別名]
def clean_module_name(name):
    if name.startswith('keras_applications'):
        name = name.replace('keras_applications', 'keras.applications')
    if name.startswith('keras_preprocessing'):
        name = name.replace('keras_preprocessing', 'keras.preprocessing')
    assert name[:6] == 'keras.', 'Invalid module name: %s' % name
    return name 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:9,代碼來源:autogen.py

示例2: fit

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import preprocessing [as 別名]
def fit(self, X, Y, ngram_range=1, max_features=20000, maxlen=400,
            batch_size=32, embedding_dims=50, epochs=5):
        self.tokenizer = keras.preprocessing.text.Tokenizer(
            num_words=max_features, split=" ", char_level=False)
        self.tokenizer.fit_on_texts(X)
        x_train = self.tokenizer.texts_to_sequences(X)
        self.ngram_range = ngram_range
        self.maxlen = maxlen
        self.add_ngrams = lambda x: x
        if ngram_range > 1:
            ngram_set = set()
            for input_list in x_train:
                for i in range(2, ngram_range + 1):
                    set_of_ngram = create_ngram_set(input_list, ngram_value=i)
                    ngram_set.update(set_of_ngram)

            # Dictionary mapping n-gram token to a unique integer.
            # Integer values are greater than max_features in order
            # to avoid collision with existing features.
            start_index = max_features + 1
            self.token_indice = {v: k + start_index for k, v in enumerate(ngram_set)}
            indice_token = {self.token_indice[k]: k for k in self.token_indice}

            # max_features is the highest integer that could be found in the dataset.
            max_features = np.max(list(indice_token.keys())) + 1
            self.add_ngrams = lambda x: add_ngram(x, self.token_indice,
                                                  self.ngram_range)
            x_train = self.add_ngrams(x_train)
            print('Average train sequence length: {}'.format(np.mean(list(map(len, x_train)), dtype=int)))
        x_train = sequence.pad_sequences(x_train, maxlen=self.maxlen)
        self.model = Sequential()

        # we start off with an efficient embedding layer which maps
        # our vocab indices into embedding_dims dimensions
        self.model.add(Embedding(max_features,
                                 embedding_dims,
                                 input_length=self.maxlen))

        # we add a GlobalAveragePooling1D, which will average the embeddings
        # of all words in the document
        self.model.add(GlobalAveragePooling1D())

        # We project onto a single unit output layer, and squash via sigmoid:
        self.model.add(Dense(1, activation='sigmoid'))

        self.model.compile(loss='binary_crossentropy',
                           optimizer='adam',
                           metrics=['accuracy'])
        self.model.fit(x_train, Y, batch_size=batch_size, epochs=epochs, verbose=2) 
開發者ID:marcotcr,項目名稱:sears,代碼行數:51,代碼來源:fasttext.py


注:本文中的keras.preprocessing方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。