當前位置: 首頁>>代碼示例>>Python>>正文


Python optimizers.serialize方法代碼示例

本文整理匯總了Python中keras.optimizers.serialize方法的典型用法代碼示例。如果您正苦於以下問題:Python optimizers.serialize方法的具體用法?Python optimizers.serialize怎麽用?Python optimizers.serialize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.optimizers的用法示例。


在下文中一共展示了optimizers.serialize方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import serialize [as 別名]
def __init__(self, model, optimizer, loss, loss_weights, metrics=["accuracy"], features_col="features", label_col="label",
                 batch_size=32, num_epoch=1, learning_rate=1.0):
        assert isinstance(optimizer, (str, Optimizer)), "'optimizer' must be a string or a Keras Optimizer instance"
        assert isinstance(features_col, (str, list)), "'features_col' must be a string or a list of strings"
        assert isinstance(label_col, (str, list)), "'label_col' must be a string or a list of strings"
        self.model = model
        self.optimizer = {'class_name': optimizer, 'config': {}} if isinstance(optimizer, str) else serialize(optimizer)
        self.loss = loss
        self.loss_weights = loss_weights
        self.metrics= metrics
        self.features_column = [features_col] if isinstance(features_col, str) else features_col
        self.label_column = [label_col] if isinstance(label_col, str) else label_col
        self.batch_size = batch_size
        self.num_epoch = num_epoch
        self.max_mini_batches = 100
        self.prefetching_thread = None
        self.mini_batches = None
        self.is_prefetching = True
        self.worker_id = -1
        self.learning_rate = learning_rate
        self.num_inputs = len(self.features_column)
        self.num_outputs = len(self.label_column)
        self.current_epoch = 0 
開發者ID:cerndb,項目名稱:dist-keras,代碼行數:25,代碼來源:workers.py

示例2: test_spark_ml_model

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import serialize [as 別名]
def test_spark_ml_model(spark_context):

    df = to_data_frame(spark_context, x_train, y_train, categorical=True)
    test_df = to_data_frame(spark_context, x_test, y_test, categorical=True)

    sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    sgd_conf = optimizers.serialize(sgd)

    # Initialize Spark ML Estimator
    estimator = ElephasEstimator()
    estimator.set_keras_model_config(model.to_yaml())
    estimator.set_optimizer_config(sgd_conf)
    estimator.set_mode("synchronous")
    estimator.set_loss("categorical_crossentropy")
    estimator.set_metrics(['acc'])
    estimator.set_epochs(epochs)
    estimator.set_batch_size(batch_size)
    estimator.set_validation_split(0.1)
    estimator.set_categorical_labels(True)
    estimator.set_nb_classes(nb_classes)

    # Fitting a model returns a Transformer
    pipeline = Pipeline(stages=[estimator])
    fitted_pipeline = pipeline.fit(df)

    # Evaluate Spark model by evaluating the underlying model
    prediction = fitted_pipeline.transform(test_df)
    pnl = prediction.select("label", "prediction")
    pnl.show(100)

    prediction_and_label = pnl.rdd.map(lambda row: (row.label, row.prediction))
    metrics = MulticlassMetrics(prediction_and_label)
    print(metrics.precision())
    print(metrics.recall()) 
開發者ID:maxpumperla,項目名稱:elephas,代碼行數:36,代碼來源:test_ml_model.py

示例3: _test_optimizer

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import serialize [as 別名]
def _test_optimizer(optimizer, target=0.75):
    x_train, y_train = get_test_data()
    model = get_model(x_train.shape[1], 10, y_train.shape[1])
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])
    history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0)
    assert history.history['acc'][-1] >= target
    config = optimizers.serialize(optimizer)
    custom_objects = {optimizer.__class__.__name__: optimizer.__class__}
    optim = optimizers.deserialize(config, custom_objects)
    new_config = optimizers.serialize(optim)
    assert config == new_config 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:15,代碼來源:optimizers.py

示例4: _test_optimizer

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import serialize [as 別名]
def _test_optimizer(optimizer, target=0.75):
    x_train, y_train = get_test_data()

    model = Sequential()
    model.add(Dense(10, input_shape=(x_train.shape[1],)))
    model.add(Activation('relu'))
    model.add(Dense(y_train.shape[1]))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])

    history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0)
    assert history.history['acc'][-1] >= target
    config = optimizers.serialize(optimizer)
    optim = optimizers.deserialize(config)
    new_config = optimizers.serialize(optim)
    new_config['class_name'] = new_config['class_name'].lower()
    assert config == new_config

    # Test constraints.
    model = Sequential()
    dense = Dense(10,
                  input_shape=(x_train.shape[1],),
                  kernel_constraint=lambda x: 0. * x + 1.,
                  bias_constraint=lambda x: 0. * x + 2.,)
    model.add(dense)
    model.add(Activation('relu'))
    model.add(Dense(y_train.shape[1]))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])
    model.train_on_batch(x_train[:10], y_train[:10])
    kernel, bias = dense.get_weights()
    assert_allclose(kernel, 1.)
    assert_allclose(bias, 2.) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:39,代碼來源:optimizers_test.py

示例5: _test_optimizer

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import serialize [as 別名]
def _test_optimizer(optimizer, target=0.75):
    x_train, y_train = get_test_data()

    model = Sequential()
    model.add(Dense(10, input_shape=(x_train.shape[1],)))
    model.add(Activation('relu'))
    model.add(Dense(y_train.shape[1]))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])

    history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0)
    # TODO PlaidML fails this test
    assert history.history['acc'][-1] >= target
    config = k_optimizers.serialize(optimizer)
    optim = k_optimizers.deserialize(config)
    new_config = k_optimizers.serialize(optim)
    new_config['class_name'] = new_config['class_name'].lower()
    assert config == new_config

    # Test constraints.
    model = Sequential()
    dense = Dense(10,
                  input_shape=(x_train.shape[1],),
                  kernel_constraint=lambda x: 0. * x + 1.,
                  bias_constraint=lambda x: 0. * x + 2.,)
    model.add(dense)
    model.add(Activation('relu'))
    model.add(Dense(y_train.shape[1]))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])
    model.train_on_batch(x_train[:10], y_train[:10])
    kernel, bias = dense.get_weights()
    assert_allclose(kernel, 1.)
    assert_allclose(bias, 2.) 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:40,代碼來源:optimizers_test.py

示例6: get_config

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import serialize [as 別名]
def get_config(self):
        config = {'optimizer':                  serialize(self.optimizer),
                  'l2_full_step':               float(K.get_value(self.l2_full_step)),
                  'l2_full_ratio':              float(K.get_value(self.l2_full_ratio)),
                  'l2_difference_full_ratio':   float(K.get_value(self.l2_difference_full_ratio))}
        return config 
開發者ID:YerevaNN,項目名稱:DIIN-in-Keras,代碼行數:8,代碼來源:l2optimizer.py

示例7: __init__

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import serialize [as 別名]
def __init__(self, model, mode='asynchronous', frequency='epoch',  parameter_server_mode='http', num_workers=None,
                 custom_objects=None, batch_size=32,  port=4000, *args, **kwargs):
        """SparkModel

        Base class for distributed training on RDDs. Spark model takes a Keras
        model as master network, an optimization scheme, a parallelisation mode
        and an averaging frequency.

        :param model: Compiled Keras model
        :param mode: String, choose from `asynchronous`, `synchronous` and `hogwild`
        :param frequency: String, either `epoch` or `batch`
        :param parameter_server_mode: String, either `http` or `socket`
        :param num_workers: int, number of workers used for training (defaults to None)
        :param custom_objects: Keras custom objects
        :param batch_size: batch size used for training and inference
        :param port: port used in case of 'http' parameter server mode
        """

        self._master_network = model
        if not hasattr(model, "loss"):
            raise Exception(
                "Compile your Keras model before initializing an Elephas model with it")
        metrics = model.metrics
        loss = model.loss
        optimizer = serialize_optimizer(model.optimizer)

        if custom_objects is None:
            custom_objects = {}
        if metrics is None:
            metrics = ["accuracy"]
        self.mode = mode
        self.frequency = frequency
        self.num_workers = num_workers
        self.weights = self._master_network.get_weights()
        self.pickled_weights = None
        self.master_optimizer = optimizer
        self.master_loss = loss
        self.master_metrics = metrics
        self.custom_objects = custom_objects
        self.parameter_server_mode = parameter_server_mode
        self.batch_size = batch_size
        self.port = port
        self.kwargs = kwargs

        self.serialized_model = model_to_dict(model)
        if self.mode is not 'synchronous':
            if self.parameter_server_mode == 'http':
                self.parameter_server = HttpServer(
                    self.serialized_model, self.mode, self.port)
                self.client = HttpClient(self.port)
            elif self.parameter_server_mode == 'socket':
                self.parameter_server = SocketServer(self.serialized_model)
                self.client = SocketClient()
            else:
                raise ValueError("Parameter server mode has to be either `http` or `socket`, "
                                 "got {}".format(self.parameter_server_mode)) 
開發者ID:maxpumperla,項目名稱:elephas,代碼行數:58,代碼來源:spark_model.py


注:本文中的keras.optimizers.serialize方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。