本文整理匯總了Python中keras.optimizers.rmsprop方法的典型用法代碼示例。如果您正苦於以下問題:Python optimizers.rmsprop方法的具體用法?Python optimizers.rmsprop怎麽用?Python optimizers.rmsprop使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.optimizers
的用法示例。
在下文中一共展示了optimizers.rmsprop方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: GRU64
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import rmsprop [as 別名]
def GRU64(n_nodes, conv_len, n_classes, n_feat, in_len,
optimizer=rmsprop(lr=1e-3), return_param_str=False):
n_layers = len(n_nodes)
inputs = Input(shape=(in_len, n_feat))
model = inputs
model = CuDNNGRU(64, return_sequences=True)(model)
model = SpatialDropout1D(0.5)(model)
model.set_shape((None, in_len, 64))
model = TimeDistributed(Dense(n_classes, name='fc', activation='softmax'))(model)
model = Model(inputs=inputs, outputs=model)
model.compile(optimizer=optimizer, loss='categorical_crossentropy', sample_weight_mode="temporal")
if return_param_str:
param_str = "GRU_C{}_L{}".format(conv_len, n_layers)
return model, param_str
else:
return model
示例2: test_sequential_model_saving_2
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import rmsprop [as 別名]
def test_sequential_model_saving_2():
# test with custom optimizer, loss
custom_opt = optimizers.rmsprop
custom_loss = losses.mse
model = Sequential()
model.add(Dense(2, input_shape=(3,)))
model.add(Dense(3))
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname,
custom_objects={'custom_opt': custom_opt,
'custom_loss': custom_loss})
os.remove(fname)
out2 = model.predict(x)
assert_allclose(out, out2, atol=1e-05)
示例3: dueling_dqn
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import rmsprop [as 別名]
def dueling_dqn(input_shape, action_size, learning_rate):
state_input = Input(shape=(input_shape))
x = Convolution2D(32, 8, 8, subsample=(4, 4), activation='relu')(state_input)
x = Convolution2D(64, 4, 4, subsample=(2, 2), activation='relu')(x)
x = Convolution2D(64, 3, 3, activation='relu')(x)
x = Flatten()(x)
# state value tower - V
state_value = Dense(256, activation='relu')(x)
state_value = Dense(1, init='uniform')(state_value)
state_value = Lambda(lambda s: K.expand_dims(s[:, 0], dim=-1), output_shape=(action_size,))(state_value)
# action advantage tower - A
action_advantage = Dense(256, activation='relu')(x)
action_advantage = Dense(action_size)(action_advantage)
action_advantage = Lambda(lambda a: a[:, :] - K.mean(a[:, :], keepdims=True), output_shape=(action_size,))(action_advantage)
# merge to state-action value function Q
state_action_value = merge([state_value, action_advantage], mode='sum')
model = Model(input=state_input, output=state_action_value)
#model.compile(rmsprop(lr=learning_rate), "mse")
adam = Adam(lr=learning_rate)
model.compile(loss='mse',optimizer=adam)
return model
示例4: get_optimizer
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import rmsprop [as 別名]
def get_optimizer(opt_params, lr):
"""Helper to get optimizer from text params"""
if opt_params['opt_func'] == 'sgd':
return SGD(lr=lr, momentum=opt_params['momentum'])
elif opt_params['opt_func'] == 'adam':
return Adam(lr=lr)
elif opt_params['opt_func'] == 'rmsprop':
return rmsprop(lr=lr)
else:
raise ValueError
示例5: subactivity_train_lstm
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import rmsprop [as 別名]
def subactivity_train_lstm(metadata_root):
nb_epoch = 100
nb_classes = 10
batch_size = 32
train_path = metadata_root + 'data/train'
val_path = metadata_root + 'data/val'
model_path = metadata_root + 'models/cnn/'
x_train_path = train_path + '/subactivity_lstm_feature_train.npy'
x_val_path = val_path + '/subactivity_lstm_feature_val.npy'
y_train_path = train_path + '/subactivity_lstm_gt_train.npy'
y_val_path = val_path + '/subactivity_lstm_gt_val.npy'
model_name = 'subactivity_lstm_epoch_100_sequencelen_50.h5'
print 'loading the data'
x_train = np.load(x_train_path)
x_val = np.load(x_val_path)
y_train = np.load(y_train_path)
y_val = np.load(y_val_path)
print 'successful initializing the model'
final_model = lstm_model(x_train.shape[2], max_len=50)
optimizer = rmsprop(lr=0.001)
print 'compiling'
final_model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
print 'saving the model figure'
plot(final_model, to_file=model_path + model_name[:-3] + '.png', show_shapes=True)
print 'fitting'
final_model.fit(x_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch,
validation_data=(x_val, y_val))
final_model.save(model_path + model_name)
示例6: get_optimizer
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import rmsprop [as 別名]
def get_optimizer(opt_params, lr):
"""Helper to get optimizer from text params
Parameters
----------
opt_params: dict
Dictionary containing optimization function name and learning rate decay
lr: float
Initial learning rate
Return
------
opt_function: Keras optimizer
"""
if opt_params['opt_func'] == 'sgd':
return SGD(lr=lr, momentum=opt_params['momentum'])
elif opt_params['opt_func'] == 'adam':
return Adam(lr=lr)
elif opt_params['opt_func'] == 'rmsprop':
return rmsprop(lr=lr)
elif opt_params['opt_func'] == 'nadam':
return Nadam(lr=lr)
elif opt_params['opt_func'] == 'powersign':
from tensorflow.contrib.opt.python.training import sign_decay as sd
d_steps = opt_params['pwr_sign_decay_steps']
# Define the decay function (if specified)
if opt_params['pwr_sign_decay_func'] == 'lin':
decay_func = sd.get_linear_decay_fn(d_steps)
elif opt_params['pwr_sign_decay_func'] == 'cos':
decay_func = sd.get_consine_decay_fn(d_steps)
elif opt_params['pwr_sign_decay_func'] == 'res':
decay_func = sd.get_restart_decay_fn(d_steps,
num_periods=opt_params['pwr_sign_decay_periods'])
elif opt_params['decay_func'] is None:
decay_func = None
else:
raise ValueError('decay function not specified correctly')
# Use decay function in TF optimizer
return TFOptimizer(PowerSignOptimizer(learning_rate=lr,
sign_decay_fn=decay_func))
else:
raise ValueError
示例7: test_loading_weights_by_name_and_reshape
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import rmsprop [as 別名]
def test_loading_weights_by_name_and_reshape():
"""
test loading model weights by name on:
- sequential model
"""
# test with custom optimizer, loss
custom_opt = optimizers.rmsprop
custom_loss = losses.mse
# sequential model
model = Sequential()
model.add(Conv2D(2, (1, 1), input_shape=(1, 1, 1), name='rick'))
model.add(Flatten())
model.add(Dense(3, name='morty'))
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
x = np.random.random((1, 1, 1, 1))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
old_weights = [layer.get_weights() for layer in model.layers]
_, fname = tempfile.mkstemp('.h5')
model.save_weights(fname)
# delete and recreate model
del(model)
model = Sequential()
model.add(Conv2D(2, (1, 1), input_shape=(1, 1, 1), name='rick'))
model.add(Conv2D(3, (1, 1), name='morty'))
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
# load weights from first model
with pytest.raises(ValueError):
model.load_weights(fname, by_name=True, reshape=False)
with pytest.raises(ValueError):
model.load_weights(fname, by_name=False, reshape=False)
model.load_weights(fname, by_name=False, reshape=True)
model.load_weights(fname, by_name=True, reshape=True)
os.remove(fname)
out2 = model.predict(x)
assert_allclose(np.squeeze(out), np.squeeze(out2), atol=1e-05)
for i in range(len(model.layers)):
new_weights = model.layers[i].get_weights()
for j in range(len(new_weights)):
# only compare layers that have weights, skipping Flatten()
if old_weights[i]:
assert_allclose(old_weights[i][j], new_weights[j], atol=1e-05)
示例8: test_loading_weights_by_name_2
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import rmsprop [as 別名]
def test_loading_weights_by_name_2():
"""
test loading model weights by name on:
- both sequential and functional api models
- different architecture with shared names
"""
# test with custom optimizer, loss
custom_opt = optimizers.rmsprop
custom_loss = losses.mse
# sequential model
model = Sequential()
model.add(Dense(2, input_shape=(3,), name='rick'))
model.add(Dense(3, name='morty'))
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
old_weights = [layer.get_weights() for layer in model.layers]
_, fname = tempfile.mkstemp('.h5')
model.save_weights(fname)
# delete and recreate model using Functional API
del(model)
data = Input(shape=(3,))
rick = Dense(2, name='rick')(data)
jerry = Dense(3, name='jerry')(rick) # add 2 layers (but maintain shapes)
jessica = Dense(2, name='jessica')(jerry)
morty = Dense(3, name='morty')(jessica)
model = Model(inputs=[data], outputs=[morty])
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
# load weights from first model
model.load_weights(fname, by_name=True)
os.remove(fname)
out2 = model.predict(x)
assert np.max(np.abs(out - out2)) > 1e-05
rick = model.layers[1].get_weights()
jerry = model.layers[2].get_weights()
jessica = model.layers[3].get_weights()
morty = model.layers[4].get_weights()
assert_allclose(old_weights[0][0], rick[0], atol=1e-05)
assert_allclose(old_weights[0][1], rick[1], atol=1e-05)
assert_allclose(old_weights[1][0], morty[0], atol=1e-05)
assert_allclose(old_weights[1][1], morty[1], atol=1e-05)
assert_allclose(np.zeros_like(jerry[1]), jerry[1]) # biases init to 0
assert_allclose(np.zeros_like(jessica[1]), jessica[1]) # biases init to 0
示例9: test_loading_weights_by_name_skip_mismatch
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import rmsprop [as 別名]
def test_loading_weights_by_name_skip_mismatch():
"""
test skipping layers while loading model weights by name on:
- sequential model
"""
# test with custom optimizer, loss
custom_opt = optimizers.rmsprop
custom_loss = losses.mse
# sequential model
model = Sequential()
model.add(Dense(2, input_shape=(3,), name='rick'))
model.add(Dense(3, name='morty'))
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
old_weights = [layer.get_weights() for layer in model.layers]
_, fname = tempfile.mkstemp('.h5')
model.save_weights(fname)
# delete and recreate model
del(model)
model = Sequential()
model.add(Dense(2, input_shape=(3,), name='rick'))
model.add(Dense(4, name='morty')) # different shape w.r.t. previous model
model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc'])
# load weights from first model
with pytest.warns(UserWarning): # expect UserWarning for skipping weights
model.load_weights(fname, by_name=True, skip_mismatch=True)
os.remove(fname)
# assert layers 'rick' are equal
for old, new in zip(old_weights[0], model.layers[0].get_weights()):
assert_allclose(old, new, atol=1e-05)
# assert layers 'morty' are not equal, since we skipped loading this layer
for old, new in zip(old_weights[1], model.layers[1].get_weights()):
assert_raises(AssertionError, assert_allclose, old, new, atol=1e-05)
# a function to be called from the Lambda layer