本文整理匯總了Python中keras.optimizers.get方法的典型用法代碼示例。如果您正苦於以下問題:Python optimizers.get方法的具體用法?Python optimizers.get怎麽用?Python optimizers.get使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.optimizers
的用法示例。
在下文中一共展示了optimizers.get方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: train
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def train(self, data_iterator):
"""Train a keras model on a worker
"""
optimizer = get_optimizer(self.master_optimizer)
self.model = model_from_yaml(self.yaml, self.custom_objects)
self.model.compile(optimizer=optimizer,
loss=self.master_loss, metrics=self.master_metrics)
self.model.set_weights(self.parameters.value)
feature_iterator, label_iterator = tee(data_iterator, 2)
x_train = np.asarray([x for x, y in feature_iterator])
y_train = np.asarray([y for x, y in label_iterator])
self.model.compile(optimizer=self.master_optimizer,
loss=self.master_loss,
metrics=self.master_metrics)
weights_before_training = self.model.get_weights()
if x_train.shape[0] > self.train_config.get('batch_size'):
self.model.fit(x_train, y_train, **self.train_config)
weights_after_training = self.model.get_weights()
deltas = subtract_params(
weights_before_training, weights_after_training)
yield deltas
示例2: _fit
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def _fit(self, df):
"""Private fit method of the Estimator, which trains the model.
"""
simple_rdd = df_to_simple_rdd(df, categorical=self.get_categorical_labels(), nb_classes=self.get_nb_classes(),
features_col=self.getFeaturesCol(), label_col=self.getLabelCol())
simple_rdd = simple_rdd.repartition(self.get_num_workers())
keras_model = model_from_yaml(self.get_keras_model_config())
metrics = self.get_metrics()
loss = self.get_loss()
optimizer = get_optimizer(self.get_optimizer_config())
keras_model.compile(loss=loss, optimizer=optimizer, metrics=metrics)
spark_model = SparkModel(model=keras_model,
mode=self.get_mode(),
frequency=self.get_frequency(),
num_workers=self.get_num_workers())
spark_model.fit(simple_rdd,
epochs=self.get_epochs(),
batch_size=self.get_batch_size(),
verbose=self.get_verbosity(),
validation_split=self.get_validation_split())
model_weights = spark_model.master_network.get_weights()
weights = simple_rdd.ctx.broadcast(model_weights)
return ElephasTransformer(labelCol=self.getLabelCol(),
outputCol='prediction',
keras_model_config=spark_model.master_network.to_yaml(),
weights=weights)
示例3: compile
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def compile(self, state_dim_values, lr=0.2, policy_rule="maxrand", init_value=None):
"""Build and initialize table with all possible state values.
state_dim_values consists of a tuple of arrays or lists - each array
gives every possible value for the corresponding dimension.
"""
self.policy_rule = policies.get(policy_rule)
if init_value is None:
self.init_value = np.zeros(self.num_actions)
else:
self.init_value = init_value
self.table = {key: np.array(self.init_value) for key in list(itertools.product(*state_dim_values))}
self.lr = lr
示例4: values
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def values(self, observation):
if observation.ndim == 1:
vals = self.table[tuple(observation)]
else:
obs_tuple = tuple(map(tuple, observation)) # convert to tuple of tuples
vals = map(self.table.__getitem__, obs_tuple) # get values from dict as list of arrays
vals = np.asarray(vals) # convert list of arrays to matrix (2-d array)
return vals
示例5: _numLabels
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def _numLabels(self):
'''
Use the taskdef to get total number of labels
'''
if self.taskdef is None:
raise RuntimeError('must provide a task definition including' + \
'all actions and descriptions.')
return self.taskdef.numActions()
示例6: getOptimizer
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def getOptimizer(self):
'''
Set up a keras optimizer based on whatever settings you provided.
'''
optimizer = optimizers.get(self.optimizer)
try:
optimizer.lr = K.variable(self.lr, name='lr')
optimizer.clipnorm = self.clipnorm
except Exception:
print('WARNING: could not set all optimizer flags')
return optimizer
示例7: compile
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def compile(self, *args, **kwargs):
'''Refer to Model.compile docstring for parameters. Override
functionality is documented below.
:override compile: Override Model.compile method to check for options
that the optimizer is multi-gpu enabled, and synchronize initial
variables.
'''
initsync = self._initsync
usenccl = self._usenccl
opt = kwargs['optimizer']
# if isinstance(opt, str):
if not isinstance(opt, KO.Optimizer):
opt = KO.get(opt)
kwargs['optimizer'] = opt
if self._syncopt and not getattr(opt, 'ismgpu', False):
raise RuntimeError(
'Multi-GPU synchronization model requires a multi-GPU '
'optimizer. Instead got: {}'.format(opt))
opt.usenccl = usenccl
if self._enqueue_ops:
# Produces a warning that kwargs are ignored for Tensorflow. Patch
# Function in tensorflow_backend to use the enqueue_ops option.
kwargs['fetches'] = self._enqueue_ops
super(ModelMGPU, self).compile(*args, **kwargs)
if initsync:
self._run_initsync()
示例8: clone_optimizer
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def clone_optimizer(optimizer):
if type(optimizer) is str:
return optimizers.get(optimizer)
# Requires Keras 1.0.7 since get_config has breaking changes.
params = dict([(k, v) for k, v in optimizer.get_config().items()])
config = {
'class_name': optimizer.__class__.__name__,
'config': params,
}
if hasattr(optimizers, 'optimizer_from_config'):
# COMPATIBILITY: Keras < 2.0
clone = optimizers.optimizer_from_config(config)
else:
clone = optimizers.deserialize(config)
return clone
示例9: __emcoef_monitor
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def __emcoef_monitor(reportq):
total_proccnt = {}
while True:
obj = reportq.get()
if isinstance(obj, StopIteration):
break
pid, proccnt = obj
total_proccnt[pid] = proccnt
print("EM coefficients calculated for {} samples\r".format(sum(total_proccnt.values())), end='')
sys.stdout.flush()
print("EM coefficients calculated for {} samples".format(sum(total_proccnt.values())))
示例10: compile
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def compile(self, optimizer, loss):
self.optimizer = optimizers.get(optimizer)
self.loss = objectives.get(loss)
# input of model
self.X_train = self.get_input(train=True)
self.X_test = self.get_input(train=False)
train_loss = self.loss(self.X_train)
test_loss = self.loss(self.X_test)
train_loss.name = 'train_loss'
test_loss.name = 'test_loss'
for r in self.regularizers:
train_loss = r(train_loss)
updates = self.optimizer.get_updates(self.params, self.constraints, train_loss)
updates += self.updates
if type(self.X_train) == list:
train_ins = self.X_train
test_ins = self.X_test
else:
train_ins = [self.X_train]
test_ins = [self.X_test]
self._train = K.function(train_ins, train_loss, updates=updates)
self._test = K.function(test_ins, test_loss)
# train model, adapted from keras.models.Sequential
示例11: predict
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def predict(self, world):
'''
This is the basic, "dumb" option. Compute the next option/policy to
execute by evaluating the supervisor, then just call that model.
'''
features = world.initial_features #getHistoryMatrix()
if isinstance(features, list):
assert len(features) == len(self.supervisor.inputs) - 1
else:
features = [features]
if self.supervisor is None:
raise RuntimeError('high level model is missing')
features = [f.reshape((1,)+f.shape) for f in features]
res = self.supervisor.predict(features +
[self._makeOption1h(self.prev_option)])
next_policy = np.argmax(res)
print("Next policy = ", next_policy,)
if self.taskdef is not None:
print("taskdef =", self.taskdef.name(next_policy))
one_hot = np.zeros((1,self._numLabels()))
one_hot[0,next_policy] = 1.
features2 = features + [one_hot]
# ===============================================
# INTERMEDIATE CODE PLEASE REMOVE
res = self.predictor.predict(features2)
import matplotlib.pyplot as plt
plt.subplot(2,1,1)
plt.imshow(features[0][0])
plt.subplot(2,1,2)
plt.imshow(res[0][0])
plt.ion()
plt.show(block=False)
plt.pause(0.01)
# ===============================================
# Retrieve the next policy we want to execute
policy = self.policies[next_policy]
# Update previous option -- which one did we end up choosing, and which
# policy did we execute?
self.prev_option = next_policy
# Evaluate this policy to get the next action out
return policy.predict(features)
示例12: all_sync_params
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def all_sync_params(tower_params, devices, usenccl=True):
"""Assigns the params from the first tower to all others"""
if len(devices) == 1:
return tf.no_op()
sync_ops = []
if have_nccl and usenccl:
for param_on_devices in zip(*tower_params):
# print('PARAM_ON_DEVICES: {}'.format(param_on_devices)) # DEBUG
# Note: param_on_devices is [paramX_gpu0, paramX_gpu1, ...]
param0 = param_on_devices[0]
send_op, received_tensors = nccl.broadcast(param0, devices[1:])
sync_ops.append(send_op)
for device, param, received in zip(devices[1:],
param_on_devices[1:],
received_tensors):
with tf.device(device):
sync_op = param.assign(received)
sync_ops.append(sync_op)
else:
params0 = tower_params[0]
for device, params in zip(devices, tower_params):
with tf.device(device):
for param, param0 in zip(params, params0):
sync_op = param.assign(param0.read_value())
sync_ops.append(sync_op)
return tf.group(*sync_ops)
# def stage(tensors):
# """Stages the given tensors in a StagingArea for asynchronous put/get.
# """
# stage_area = data_flow_ops.StagingArea(
# dtypes=[tensor.dtype for tensor in tensors],
# shapes=[tensor.get_shape() for tensor in tensors])
# put_op = stage_area.put(tensors)
# get_tensors = stage_area.get()
# if not isinstance(get_tensors, list):
# get_tensors = [get_tensors]
# # print('GET_TENSORS: {}'.format(get_tensors)) # DEBUG
#
# get_tensors = [tf.reshape(gt, t.get_shape())
# for (gt, t) in zip(get_tensors, tensors)]
# return put_op, get_tensors
示例13: make_online
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def make_online(self):
embedding = K.variable(np.random.uniform(0, 1, (self.dataset.nsize, self.flowargs['embdim'])))
prevemb = K.placeholder(ndim=2, dtype='float32') # (nsize, d)
data = K.placeholder(ndim=2, dtype='int32') # (batchsize, 5), [k, from_pos, to_pos, from_neg, to_neg]
weight = K.placeholder(ndim=1, dtype='float32') # (batchsize, )
if K._BACKEND == 'theano':
# (batchsize, d) => (batchsize, )
# data[:, 0] should be always 0, so we simply ignore it
# note, when you want to use it, that according to data generation procedure, the actual data[:, 0] is not 0
dist_pos = embedding[data[:, 1]] - embedding[data[:, 2]]
dist_pos = K.sum(dist_pos * dist_pos, axis=-1)
dist_neg = embedding[data[:, 3]] - embedding[data[:, 4]]
dist_neg = K.sum(dist_neg * dist_neg, axis=-1)
else:
dist_pos = K.gather(embedding, K.squeeze(K.slice(data, [0, 1], [-1, 1]), axis=1)) - \
K.gather(embedding, K.squeeze(K.slice(data, [0, 2], [-1, 1]), axis=1))
dist_pos = K.sum(dist_pos * dist_pos, axis=-1)
dist_neg = K.gather(embedding, K.squeeze(K.slice(data, [0, 3], [-1, 1]), axis=1)) - \
K.gather(embedding, K.squeeze(K.slice(data, [0, 4], [-1, 1]), axis=1))
dist_neg = K.sum(dist_neg * dist_neg, axis=-1)
# (batchsize, )
margin = 1
lprox = K.maximum(margin + dist_pos - dist_neg, 0) * weight
# (1, )
lprox = K.mean(lprox)
# lsmooth
lsmooth = embedding - prevemb # (nsize, d)
lsmooth = K.sum(K.square(lsmooth), axis=-1) # (nsize)
lsmooth = K.mean(lsmooth)
loss = lprox + self.flowargs['beta'][0] * lsmooth
opt = optimizers.get({'class_name': 'Adagrad', 'config': {'lr': self.lr}})
cstr = {embedding: constraints.get({'class_name': 'maxnorm', 'config': {'max_value': 1, 'axis': 1}})}
upd = opt.get_updates([embedding], cstr, loss)
lf = K.function([data, weight, prevemb], [loss], updates=upd)
return lf, None, [embedding], {}