當前位置: 首頁>>代碼示例>>Python>>正文


Python optimizers.get方法代碼示例

本文整理匯總了Python中keras.optimizers.get方法的典型用法代碼示例。如果您正苦於以下問題:Python optimizers.get方法的具體用法?Python optimizers.get怎麽用?Python optimizers.get使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.optimizers的用法示例。


在下文中一共展示了optimizers.get方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: train

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def train(self, data_iterator):
        """Train a keras model on a worker
        """
        optimizer = get_optimizer(self.master_optimizer)
        self.model = model_from_yaml(self.yaml, self.custom_objects)
        self.model.compile(optimizer=optimizer,
                           loss=self.master_loss, metrics=self.master_metrics)
        self.model.set_weights(self.parameters.value)

        feature_iterator, label_iterator = tee(data_iterator, 2)
        x_train = np.asarray([x for x, y in feature_iterator])
        y_train = np.asarray([y for x, y in label_iterator])

        self.model.compile(optimizer=self.master_optimizer,
                           loss=self.master_loss,
                           metrics=self.master_metrics)

        weights_before_training = self.model.get_weights()
        if x_train.shape[0] > self.train_config.get('batch_size'):
            self.model.fit(x_train, y_train, **self.train_config)
        weights_after_training = self.model.get_weights()
        deltas = subtract_params(
            weights_before_training, weights_after_training)
        yield deltas 
開發者ID:maxpumperla,項目名稱:elephas,代碼行數:26,代碼來源:worker.py

示例2: _fit

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def _fit(self, df):
        """Private fit method of the Estimator, which trains the model.
        """
        simple_rdd = df_to_simple_rdd(df, categorical=self.get_categorical_labels(), nb_classes=self.get_nb_classes(),
                                      features_col=self.getFeaturesCol(), label_col=self.getLabelCol())
        simple_rdd = simple_rdd.repartition(self.get_num_workers())
        keras_model = model_from_yaml(self.get_keras_model_config())
        metrics = self.get_metrics()
        loss = self.get_loss()
        optimizer = get_optimizer(self.get_optimizer_config())
        keras_model.compile(loss=loss, optimizer=optimizer, metrics=metrics)

        spark_model = SparkModel(model=keras_model,
                                 mode=self.get_mode(),
                                 frequency=self.get_frequency(),
                                 num_workers=self.get_num_workers())
        spark_model.fit(simple_rdd,
                        epochs=self.get_epochs(),
                        batch_size=self.get_batch_size(),
                        verbose=self.get_verbosity(),
                        validation_split=self.get_validation_split())

        model_weights = spark_model.master_network.get_weights()
        weights = simple_rdd.ctx.broadcast(model_weights)
        return ElephasTransformer(labelCol=self.getLabelCol(),
                                  outputCol='prediction',
                                  keras_model_config=spark_model.master_network.to_yaml(),
                                  weights=weights) 
開發者ID:maxpumperla,項目名稱:elephas,代碼行數:30,代碼來源:ml_model.py

示例3: compile

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def compile(self, state_dim_values, lr=0.2, policy_rule="maxrand", init_value=None):
        """Build and initialize table with all possible state values.
           state_dim_values consists of a tuple of arrays or lists - each array
           gives every possible value for the corresponding dimension.
        """

        self.policy_rule = policies.get(policy_rule)

        if init_value is None:
            self.init_value = np.zeros(self.num_actions)
        else:
            self.init_value = init_value

        self.table = {key: np.array(self.init_value) for key in list(itertools.product(*state_dim_values))}
        self.lr = lr 
開發者ID:EderSantana,項目名稱:X,代碼行數:17,代碼來源:models.py

示例4: values

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def values(self, observation):
        if observation.ndim == 1:
            vals = self.table[tuple(observation)]
        else:
            obs_tuple = tuple(map(tuple, observation))  # convert to tuple of tuples
            vals = map(self.table.__getitem__, obs_tuple)  # get values from dict as list of arrays
        vals = np.asarray(vals)  # convert list of arrays to matrix (2-d array)
        return vals 
開發者ID:EderSantana,項目名稱:X,代碼行數:10,代碼來源:models.py

示例5: _numLabels

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def _numLabels(self):
        '''
        Use the taskdef to get total number of labels
        '''
        if self.taskdef is None:
            raise RuntimeError('must provide a task definition including' + \
                               'all actions and descriptions.')
        return self.taskdef.numActions() 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:10,代碼來源:abstract.py

示例6: getOptimizer

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def getOptimizer(self):
        '''
        Set up a keras optimizer based on whatever settings you provided.
        '''
        optimizer = optimizers.get(self.optimizer)
        try:
            optimizer.lr = K.variable(self.lr, name='lr')
            optimizer.clipnorm = self.clipnorm
        except Exception:
            print('WARNING: could not set all optimizer flags')
        return optimizer 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:13,代碼來源:abstract.py

示例7: compile

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def compile(self, *args, **kwargs):
        '''Refer to Model.compile docstring for parameters. Override
        functionality is documented below.

        :override compile: Override Model.compile method to check for options
            that the optimizer is multi-gpu enabled, and synchronize initial
            variables.
        '''
        initsync = self._initsync
        usenccl = self._usenccl

        opt = kwargs['optimizer']
        # if isinstance(opt, str):
        if not isinstance(opt, KO.Optimizer):
            opt = KO.get(opt)
            kwargs['optimizer'] = opt

        if self._syncopt and not getattr(opt, 'ismgpu', False):
            raise RuntimeError(
                'Multi-GPU synchronization model requires a multi-GPU '
                'optimizer. Instead got: {}'.format(opt))

        opt.usenccl = usenccl

        if self._enqueue_ops:
            # Produces a warning that kwargs are ignored for Tensorflow. Patch
            # Function in tensorflow_backend to use the enqueue_ops option.
            kwargs['fetches'] = self._enqueue_ops

        super(ModelMGPU, self).compile(*args, **kwargs)

        if initsync:
            self._run_initsync() 
開發者ID:avolkov1,項目名稱:keras_experiments,代碼行數:35,代碼來源:_multigpu_with_nccl.py

示例8: clone_optimizer

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def clone_optimizer(optimizer):
    if type(optimizer) is str:
        return optimizers.get(optimizer)
    # Requires Keras 1.0.7 since get_config has breaking changes.
    params = dict([(k, v) for k, v in optimizer.get_config().items()])
    config = {
        'class_name': optimizer.__class__.__name__,
        'config': params,
    }
    if hasattr(optimizers, 'optimizer_from_config'):
        # COMPATIBILITY: Keras < 2.0
        clone = optimizers.optimizer_from_config(config)
    else:
        clone = optimizers.deserialize(config)
    return clone 
開發者ID:keras-rl,項目名稱:keras-rl,代碼行數:17,代碼來源:util.py

示例9: __emcoef_monitor

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def __emcoef_monitor(reportq):
        total_proccnt = {}
        while True:
            obj = reportq.get()
            if isinstance(obj, StopIteration):
                break
            pid, proccnt = obj
            total_proccnt[pid] = proccnt
            print("EM coefficients calculated for {} samples\r".format(sum(total_proccnt.values())), end='')
            sys.stdout.flush()
        print("EM coefficients calculated for {} samples".format(sum(total_proccnt.values()))) 
開發者ID:luckiezhou,項目名稱:DynamicTriad,代碼行數:13,代碼來源:dynamic_triad.py

示例10: compile

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def compile(self, optimizer, loss):
        self.optimizer = optimizers.get(optimizer)

        self.loss = objectives.get(loss)

        # input of model
        self.X_train = self.get_input(train=True)
        self.X_test = self.get_input(train=False)

        train_loss = self.loss(self.X_train)
        test_loss = self.loss(self.X_test)

        train_loss.name = 'train_loss'
        test_loss.name = 'test_loss'

        for r in self.regularizers:
            train_loss = r(train_loss)
        updates = self.optimizer.get_updates(self.params, self.constraints, train_loss)
        updates += self.updates

        if type(self.X_train) == list:
            train_ins = self.X_train
            test_ins = self.X_test
        else:
            train_ins = [self.X_train]
            test_ins = [self.X_test]

        self._train = K.function(train_ins, train_loss, updates=updates)
        self._test = K.function(test_ins, test_loss)

    # train model, adapted from keras.models.Sequential 
開發者ID:wuaalb,項目名稱:keras_extensions,代碼行數:33,代碼來源:models.py

示例11: predict

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def predict(self, world):
        '''
        This is the basic, "dumb" option. Compute the next option/policy to
        execute by evaluating the supervisor, then just call that model.
        '''
        features = world.initial_features #getHistoryMatrix()
        if isinstance(features, list):
            assert len(features) == len(self.supervisor.inputs) - 1
        else:
            features = [features]
        if self.supervisor is None:
            raise RuntimeError('high level model is missing')
        features = [f.reshape((1,)+f.shape) for f in features]
        res = self.supervisor.predict(features +
                [self._makeOption1h(self.prev_option)])
        next_policy = np.argmax(res)

        print("Next policy = ", next_policy,)
        if self.taskdef is not None:
            print("taskdef =", self.taskdef.name(next_policy))
        one_hot = np.zeros((1,self._numLabels()))
        one_hot[0,next_policy] = 1.
        features2 = features + [one_hot]

        # ===============================================
        # INTERMEDIATE CODE PLEASE REMOVE
        res = self.predictor.predict(features2)
        import matplotlib.pyplot as plt
        plt.subplot(2,1,1)
        plt.imshow(features[0][0])
        plt.subplot(2,1,2)
        plt.imshow(res[0][0])
        plt.ion()
        plt.show(block=False)
        plt.pause(0.01)
        # ===============================================

        # Retrieve the next policy we want to execute
        policy = self.policies[next_policy]

        # Update previous option -- which one did we end up choosing, and which
        # policy did we execute?
        self.prev_option = next_policy

        # Evaluate this policy to get the next action out
        return policy.predict(features) 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:48,代碼來源:abstract.py

示例12: all_sync_params

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def all_sync_params(tower_params, devices, usenccl=True):
    """Assigns the params from the first tower to all others"""
    if len(devices) == 1:
        return tf.no_op()
    sync_ops = []
    if have_nccl and usenccl:
        for param_on_devices in zip(*tower_params):
            # print('PARAM_ON_DEVICES: {}'.format(param_on_devices))  # DEBUG
            # Note: param_on_devices is [paramX_gpu0, paramX_gpu1, ...]
            param0 = param_on_devices[0]
            send_op, received_tensors = nccl.broadcast(param0, devices[1:])
            sync_ops.append(send_op)
            for device, param, received in zip(devices[1:],
                                               param_on_devices[1:],
                                               received_tensors):
                with tf.device(device):
                    sync_op = param.assign(received)
                    sync_ops.append(sync_op)
    else:
        params0 = tower_params[0]
        for device, params in zip(devices, tower_params):
            with tf.device(device):
                for param, param0 in zip(params, params0):
                    sync_op = param.assign(param0.read_value())
                    sync_ops.append(sync_op)

    return tf.group(*sync_ops)


# def stage(tensors):
#     """Stages the given tensors in a StagingArea for asynchronous put/get.
#     """
#     stage_area = data_flow_ops.StagingArea(
#         dtypes=[tensor.dtype for tensor in tensors],
#         shapes=[tensor.get_shape() for tensor in tensors])
#     put_op = stage_area.put(tensors)
#     get_tensors = stage_area.get()
#     if not isinstance(get_tensors, list):
#         get_tensors = [get_tensors]
#     # print('GET_TENSORS: {}'.format(get_tensors))  # DEBUG
#
#     get_tensors = [tf.reshape(gt, t.get_shape())
#                    for (gt, t) in zip(get_tensors, tensors)]
#     return put_op, get_tensors 
開發者ID:avolkov1,項目名稱:keras_experiments,代碼行數:46,代碼來源:_multigpu_with_nccl.py

示例13: make_online

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import get [as 別名]
def make_online(self):
        embedding = K.variable(np.random.uniform(0, 1, (self.dataset.nsize, self.flowargs['embdim'])))
        prevemb = K.placeholder(ndim=2, dtype='float32')  # (nsize, d)
        data = K.placeholder(ndim=2, dtype='int32')  # (batchsize, 5), [k, from_pos, to_pos, from_neg, to_neg]
        weight = K.placeholder(ndim=1, dtype='float32')  # (batchsize, )

        if K._BACKEND == 'theano':
            # (batchsize, d) => (batchsize, )
            # data[:, 0] should be always 0, so we simply ignore it
            # note, when you want to use it, that according to data generation procedure, the actual data[:, 0] is not 0
            dist_pos = embedding[data[:, 1]] - embedding[data[:, 2]]
            dist_pos = K.sum(dist_pos * dist_pos, axis=-1)
            dist_neg = embedding[data[:, 3]] - embedding[data[:, 4]]
            dist_neg = K.sum(dist_neg * dist_neg, axis=-1)
        else:
            dist_pos = K.gather(embedding, K.squeeze(K.slice(data, [0, 1], [-1, 1]), axis=1)) - \
                       K.gather(embedding, K.squeeze(K.slice(data, [0, 2], [-1, 1]), axis=1))
            dist_pos = K.sum(dist_pos * dist_pos, axis=-1)
            dist_neg = K.gather(embedding, K.squeeze(K.slice(data, [0, 3], [-1, 1]), axis=1)) - \
                       K.gather(embedding, K.squeeze(K.slice(data, [0, 4], [-1, 1]), axis=1))
            dist_neg = K.sum(dist_neg * dist_neg, axis=-1)

        # (batchsize, )
        margin = 1
        lprox = K.maximum(margin + dist_pos - dist_neg, 0) * weight

        # (1, )
        lprox = K.mean(lprox)

        # lsmooth
        lsmooth = embedding - prevemb  # (nsize, d)
        lsmooth = K.sum(K.square(lsmooth), axis=-1)  # (nsize)
        lsmooth = K.mean(lsmooth)

        loss = lprox + self.flowargs['beta'][0] * lsmooth

        opt = optimizers.get({'class_name': 'Adagrad', 'config': {'lr': self.lr}})
        cstr = {embedding: constraints.get({'class_name': 'maxnorm', 'config': {'max_value': 1, 'axis': 1}})}
        upd = opt.get_updates([embedding], cstr, loss)
        lf = K.function([data, weight, prevemb], [loss], updates=upd)

        return lf, None, [embedding], {} 
開發者ID:luckiezhou,項目名稱:DynamicTriad,代碼行數:44,代碼來源:dynamic_triad.py


注:本文中的keras.optimizers.get方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。