當前位置: 首頁>>代碼示例>>Python>>正文


Python optimizers.deserialize方法代碼示例

本文整理匯總了Python中keras.optimizers.deserialize方法的典型用法代碼示例。如果您正苦於以下問題:Python optimizers.deserialize方法的具體用法?Python optimizers.deserialize怎麽用?Python optimizers.deserialize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.optimizers的用法示例。


在下文中一共展示了optimizers.deserialize方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: prepare_model

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import deserialize [as 別名]
def prepare_model(self):
        """Prepares the model for training."""
        # Set the Keras directory.
        set_keras_base_directory()
        if K.backend() == 'tensorflow':
            # set GPU option allow_growth to False for GPU-enabled tensorflow
            config = tf.ConfigProto()
            config.gpu_options.allow_growth = False
            sess = tf.Session(config=config)
            K.set_session(sess)

        # Deserialize the Keras model.
        self.model = deserialize_keras_model(self.model)
        self.optimizer = deserialize(self.optimizer)
        # Compile the model with the specified loss and optimizer.
        self.model.compile(loss=self.loss, loss_weights = self.loss_weights, 
            optimizer=self.optimizer, metrics=self.metrics) 
開發者ID:cerndb,項目名稱:dist-keras,代碼行數:19,代碼來源:workers.py

示例2: _test_optimizer

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import deserialize [as 別名]
def _test_optimizer(optimizer, target=0.75):
    x_train, y_train = get_test_data()
    model = get_model(x_train.shape[1], 10, y_train.shape[1])
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])
    history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0)
    assert history.history['acc'][-1] >= target
    config = optimizers.serialize(optimizer)
    custom_objects = {optimizer.__class__.__name__: optimizer.__class__}
    optim = optimizers.deserialize(config, custom_objects)
    new_config = optimizers.serialize(optim)
    assert config == new_config 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:15,代碼來源:optimizers.py

示例3: _test_optimizer

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import deserialize [as 別名]
def _test_optimizer(optimizer, target=0.75):
    x_train, y_train = get_test_data()

    model = Sequential()
    model.add(Dense(10, input_shape=(x_train.shape[1],)))
    model.add(Activation('relu'))
    model.add(Dense(y_train.shape[1]))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])

    history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0)
    assert history.history['acc'][-1] >= target
    config = optimizers.serialize(optimizer)
    optim = optimizers.deserialize(config)
    new_config = optimizers.serialize(optim)
    new_config['class_name'] = new_config['class_name'].lower()
    assert config == new_config

    # Test constraints.
    model = Sequential()
    dense = Dense(10,
                  input_shape=(x_train.shape[1],),
                  kernel_constraint=lambda x: 0. * x + 1.,
                  bias_constraint=lambda x: 0. * x + 2.,)
    model.add(dense)
    model.add(Activation('relu'))
    model.add(Dense(y_train.shape[1]))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])
    model.train_on_batch(x_train[:10], y_train[:10])
    kernel, bias = dense.get_weights()
    assert_allclose(kernel, 1.)
    assert_allclose(bias, 2.) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:39,代碼來源:optimizers_test.py

示例4: _test_optimizer

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import deserialize [as 別名]
def _test_optimizer(optimizer, target=0.75):
    x_train, y_train = get_test_data()

    model = Sequential()
    model.add(Dense(10, input_shape=(x_train.shape[1],)))
    model.add(Activation('relu'))
    model.add(Dense(y_train.shape[1]))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])

    history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0)
    # TODO PlaidML fails this test
    assert history.history['acc'][-1] >= target
    config = k_optimizers.serialize(optimizer)
    optim = k_optimizers.deserialize(config)
    new_config = k_optimizers.serialize(optim)
    new_config['class_name'] = new_config['class_name'].lower()
    assert config == new_config

    # Test constraints.
    model = Sequential()
    dense = Dense(10,
                  input_shape=(x_train.shape[1],),
                  kernel_constraint=lambda x: 0. * x + 1.,
                  bias_constraint=lambda x: 0. * x + 2.,)
    model.add(dense)
    model.add(Activation('relu'))
    model.add(Dense(y_train.shape[1]))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])
    model.train_on_batch(x_train[:10], y_train[:10])
    kernel, bias = dense.get_weights()
    assert_allclose(kernel, 1.)
    assert_allclose(bias, 2.) 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:40,代碼來源:optimizers_test.py

示例5: clone_optimizer

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import deserialize [as 別名]
def clone_optimizer(optimizer):
    if type(optimizer) is str:
        return optimizers.get(optimizer)
    # Requires Keras 1.0.7 since get_config has breaking changes.
    params = dict([(k, v) for k, v in optimizer.get_config().items()])
    config = {
        'class_name': optimizer.__class__.__name__,
        'config': params,
    }
    if hasattr(optimizers, 'optimizer_from_config'):
        # COMPATIBILITY: Keras < 2.0
        clone = optimizers.optimizer_from_config(config)
    else:
        clone = optimizers.deserialize(config)
    return clone 
開發者ID:keras-rl,項目名稱:keras-rl,代碼行數:17,代碼來源:util.py

示例6: build

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import deserialize [as 別名]
def build(self):
        from keras.optimizers import deserialize
        opt_config = {'class_name': self.name, 'config': self.config}
        opt = deserialize(opt_config)
        if self.horovod_wrapper:
            import horovod.keras as hvd
            if hasattr(opt, 'lr'):
                opt.lr *= hvd.size()
            opt = hvd.DistributedOptimizer(opt)
        return opt 
開發者ID:vlimant,項目名稱:mpi_learn,代碼行數:12,代碼來源:optimizer.py

示例7: from_config

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import deserialize [as 別名]
def from_config(cls, config, custom_objects=None):
        optimizer_config = config.pop('optimizer')
        optimizer = deserialize(optimizer_config)
        return cls(optimizer=optimizer, **config) 
開發者ID:YerevaNN,項目名稱:DIIN-in-Keras,代碼行數:6,代碼來源:l2optimizer.py


注:本文中的keras.optimizers.deserialize方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。