當前位置: 首頁>>代碼示例>>Python>>正文


Python optimizers.adam方法代碼示例

本文整理匯總了Python中keras.optimizers.adam方法的典型用法代碼示例。如果您正苦於以下問題:Python optimizers.adam方法的具體用法?Python optimizers.adam怎麽用?Python optimizers.adam使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.optimizers的用法示例。


在下文中一共展示了optimizers.adam方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: compile

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import adam [as 別名]
def compile(self,  lr: float=0.01, accum: bool=False):
        """
        Compiles model using specific loss (euclidean distance, optimizer (ADAM) and metrics (angular error)
        :param lr: learning rate
        :param accum: True if wait for several mini-batch to update.
        """
        if accum:
            opt = Adam_accumulate(lr=lr, accum_iters=8)
        else:
            opt = adam(lr)

        if self.model is None:
            raise ValueError('Only defined models can be compiled.')
        else:
            # Use mean euclidean distance as loss and angular error and mse as metric
            self.model.compile(loss=euclidean_distance,
                          optimizer=opt,
                              metrics=[angle_error, 'mse']) 
開發者ID:crisie,項目名稱:RecurrentGaze,代碼行數:20,代碼來源:model.py

示例2: model_keras

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import adam [as 別名]
def model_keras(num_words=3000, num_units=128):
    '''
    生成RNN模型
    :param num_words:詞匯數量
    :param num_units:詞向量維度,lstm神經元數量默認一樣
    :return:
    '''
    data_input = Input(shape=[None])
    embedding = Embedding(input_dim=num_words, output_dim=num_units, mask_zero=True)(data_input)
    lstm = LSTM(units=num_units, return_sequences=True)(embedding)
    x = LSTM(units=num_units, return_sequences=True)(lstm)
    # keras好像不支持內部對y操作,不能像tensorflow那樣用reshape
    # x = Reshape(target_shape=[-1, num_units])(x)
    outputs = Dense(units=num_words, activation='softmax')(x)

    model = Model(inputs=data_input, outputs=outputs)
    model.compile(loss='sparse_categorical_crossentropy',
                  optimizer=optimizers.adam(lr=0.01),
                  metrics=['accuracy'])
    return model 
開發者ID:renjunxiang,項目名稱:Text_Generate,代碼行數:22,代碼來源:model_keras.py

示例3: compile_model

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import adam [as 別名]
def compile_model(model, cfg):
    if cfg["optimizer"]["name"] == "SGD":
        optimizer = optimizers.SGD(
            lr=cfg["optimizer"]["lr"], momentum=cfg["optimizer"]["momentum"], decay=cfg["optimizer"]["decay"])
    elif cfg["optimizer"]["name"] == "adam":
        optimizer = optimizers.adam(lr=cfg["optimizer"]["lr"],
                                    beta_1=cfg["optimizer"]["beta_1"],
                                    beta_2=cfg["optimizer"]["beta_2"],
                                    epsilon=cfg["optimizer"]["epsilon"],
                                    decay=cfg["optimizer"]["decay"],
                                    clipnorm=cfg["optimizer"]["clipnorm"])
    else:
        raise ValueError(
            "Configuration error: the specified optimizer is not yet implemented.")

    model.compile(optimizer, loss=config.LOSS, metrics=config.METRICS)

    model.summary()
    return model 
開發者ID:qlemaire22,項目名稱:speech-music-detection,代碼行數:21,代碼來源:model_loader.py

示例4: __init__

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import adam [as 別名]
def __init__(self, scale=3, load_set=None, build_model=None,
                 optimizer='adam', save_dir='.'):
        self.scale = scale
        self.load_set = partial(load_set, scale=scale)
        self.build_model = partial(build_model, scale=scale)
        self.optimizer = optimizer
        self.save_dir = Path(save_dir)
        self.save_dir.mkdir(parents=True, exist_ok=True)

        self.config_file = self.save_dir / 'config.yaml'
        self.model_file = self.save_dir / 'model.hdf5'

        self.train_dir = self.save_dir / 'train'
        self.train_dir.mkdir(exist_ok=True)
        self.history_file = self.train_dir / 'history.csv'
        self.weights_dir = self.train_dir / 'weights'
        self.weights_dir.mkdir(exist_ok=True)

        self.test_dir = self.save_dir / 'test'
        self.test_dir.mkdir(exist_ok=True) 
開發者ID:qobilidop,項目名稱:srcnn,代碼行數:22,代碼來源:experiment.py

示例5: get_classification_model

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import adam [as 別名]
def get_classification_model(input_dim, nodes_per_layer):
    model = Sequential()
    model.add(Dense(nodes_per_layer, input_dim=input_dim, activation='tanh'))
    model.add(Dropout(.2))
    model.add(Dense(nodes_per_layer, activation='tanh'))
    model.add(Dropout(.2))
    model.add(Dense(1, activation='sigmoid'))
    model.compile(adam(lr=0.0005), loss='binary_crossentropy',
                  metrics=['accuracy'])
    return model 
開發者ID:zi-w,項目名稱:Kitchen2D,代碼行數:12,代碼來源:active_nn.py

示例6: get_regression_model

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import adam [as 別名]
def get_regression_model(input_dim, nodes_per_layer):
    model = Sequential()
    model.add(Dense(nodes_per_layer, input_dim=input_dim, activation='tanh'))
    model.add(Dropout(.2))
    model.add(Dense(nodes_per_layer, activation='tanh'))
    model.add(Dropout(.2))
    model.add(Dense(1, activation='linear'))
    model.compile(adam(lr=0.0005), loss='mse')
    return model 
開發者ID:zi-w,項目名稱:Kitchen2D,代碼行數:11,代碼來源:active_nn.py

示例7: build_model

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import adam [as 別名]
def build_model(self):

        model = Sequential()
        model.add(Dense(64, input_shape=(self.state_space,), activation='relu'))
        model.add(Dense(64, activation='relu'))
        model.add(Dense(self.action_space, activation='linear'))
        model.compile(loss='mse', optimizer=adam(lr=self.learning_rate))
        return model 
開發者ID:shivaverma,項目名稱:Orbit,代碼行數:10,代碼來源:agent.py

示例8: test_single_h5

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import adam [as 別名]
def test_single_h5(FLAGS, h5_weights_path):
    if not os.path.isfile(h5_weights_path):
        print('%s is not a h5 weights file path' % h5_weights_path)
        return
    optimizer = adam(lr=FLAGS.learning_rate, clipnorm=0.001)
    objective = 'categorical_crossentropy'
    metrics = ['accuracy']
    model = model_fn(FLAGS, objective, optimizer, metrics)
    load_weights(model, FLAGS.eval_weights_path)
    img_names, test_data, test_labels = load_test_data(FLAGS)
    predictions = model.predict(test_data, verbose=0)

    right_count = 0
    error_infos = []
    for index, pred in enumerate(predictions):
        pred_label = np.argmax(pred, axis=0)
        test_label = test_labels[index]
        if pred_label == test_label:
            right_count += 1
        else:
            error_infos.append('%s, %s, %s\n' % (img_names[index], test_label, pred_label))

    accuracy = right_count / len(img_names)
    print('accuracy: %s' % accuracy)
    result_file_name = os.path.join(os.path.dirname(h5_weights_path),
                                    '%s_accuracy.txt' % os.path.basename(h5_weights_path))
    with open(result_file_name, 'w') as f:
        f.write('# predict error files\n')
        f.write('####################################\n')
        f.write('file_name, true_label, pred_label\n')
        f.writelines(error_infos)
        f.write('####################################\n')
        f.write('accuracy: %s\n' % accuracy)
    print('end') 
開發者ID:Yangget,項目名稱:garbage_classify,代碼行數:36,代碼來源:eval.py

示例9: load_weights_save_pb

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import adam [as 別名]
def load_weights_save_pb(FLAGS):
    optimizer = adam(lr=FLAGS.learning_rate, clipnorm=0.001)
    objective = 'categorical_crossentropy'
    metrics = ['accuracy']
    model = model_fn(FLAGS, objective, optimizer, metrics)
    load_weights(model, FLAGS.freeze_weights_file_path)
    save_pb_model(FLAGS, model) 
開發者ID:Yangget,項目名稱:garbage_classify,代碼行數:9,代碼來源:save_model.py

示例10: train

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import adam [as 別名]
def train(self, x, y, learning_rate=0.01, epochs=200):
		optimizer = optimizers.adam(lr=learning_rate, decay=1e-6)
		self._model.compile(loss="mean_squared_error", optimizer=optimizer)

		self._model.fit(x, y, batch_size=32, validation_split=0.05, epochs=epochs, verbose=1) 
開發者ID:avivga,項目名稱:cocktail-party,代碼行數:7,代碼來源:network.py

示例11: generate

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import adam [as 別名]
def generate(file_list, data_dir, output_dir, context_len=32, stats=None,
             base_model_path='./pls.model', gan_model_path='./noise_gen.model'):
    
    pulse_model = time_glot_model(timesteps=context_len)
    gan_model = generator()
    
    pulse_model.compile(loss='mse', optimizer="adam")
    gan_model.compile(loss='mse', optimizer="adam")

    pulse_model.load_weights(base_model_path)
    gan_model.load_weights(gan_model_path)

    for data in nc_data_provider(file_list, data_dir, input_only=True, 
                                 context_len=context_len):
        for fname, ac_data in data.iteritems():
            print (fname)
                                              
            pls_pred, _ = pulse_model.predict([ac_data])
            noise = np.random.randn(pls_pred.shape[0], pls_pred.shape[1])
            pls_gan, _ = gan_model.predict([pls_pred, noise])
            
            out_file = os.path.join(args.output_dir, fname + '.pls')
            pls_gan.astype(np.float32).tofile(out_file)

            out_file = os.path.join(args.output_dir, fname + '.pls_nonoise')
            pls_pred.astype(np.float32).tofile(out_file) 
開發者ID:ljuvela,項目名稱:ResGAN,代碼行數:28,代碼來源:train.py

示例12: penalized_loss

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import adam [as 別名]
def penalized_loss(y_true, y_pred):
    beta = 0.5
    loss1 = mean_absolute_percentage_error(y_true, y_pred)
    loss2 = K.mean(K.maximum(K.max(y_pred, axis=1) - input_D_max, 0.), axis=-1)
    loss3 = K.mean(K.maximum(input_D_min - K.min(y_pred, axis=1), 0.), axis=-1)
    return loss1 + beta * (loss2 + loss3)

#model.compile(optimizer = 'rmsprop', loss = 'mape')
#model.compile(optimizer = 'adam', loss = penalized_loss) 
開發者ID:yalickj,項目名稱:load-forecasting-resnet,代碼行數:11,代碼來源:ResNetPlus_North_American.py

示例13: buildModel

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import adam [as 別名]
def buildModel(embeddingMatrix):
    """Constructs the architecture of the model
    Input:
        embeddingMatrix : The embedding matrix to be loaded in the embedding layer.
    Output:
        model : A basic LSTM model
    """
    x1 = Input(shape=(100,), dtype='int32', name='main_input1')
    x2 = Input(shape=(100,), dtype='int32', name='main_input2')
    x3 = Input(shape=(100,), dtype='int32', name='main_input3')

    embeddingLayer = Embedding(embeddingMatrix.shape[0],
                                EMBEDDING_DIM,
                                weights=[embeddingMatrix],
                                input_length=MAX_SEQUENCE_LENGTH,
                                trainable=False)
    emb1 = embeddingLayer(x1)
    emb2 = embeddingLayer(x2)
    emb3 = embeddingLayer(x3)

    lstm = Bidirectional(LSTM(LSTM_DIM, dropout=DROPOUT))

    lstm1 = lstm(emb1)
    lstm2 = lstm(emb2)
    lstm3 = lstm(emb3)

    inp = Concatenate(axis=-1)([lstm1, lstm2, lstm3])

    inp = Reshape((3, 2*LSTM_DIM, )) (inp)

    lstm_up = LSTM(LSTM_DIM, dropout=DROPOUT)

    out = lstm_up(inp)

    out = Dense(NUM_CLASSES, activation='softmax')(out)
    
    adam = optimizers.adam(lr=LEARNING_RATE)
    model = Model([x1,x2,x3],out)
    model.compile(loss='categorical_crossentropy',
                  optimizer=adam,
                  metrics=['acc'])
    print(model.summary())
    return model 
開發者ID:declare-lab,項目名稱:conv-emotion,代碼行數:45,代碼來源:baseline.py

示例14: load_model

# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import adam [as 別名]
def load_model(cfg):
    if cfg["type"] == "lstm":
        model = create_lstm(hidden_units=cfg["hidden_units"],
                            dropout=cfg["dropout"],
                            bidirectional=cfg["bidirectional"])
    elif cfg["type"] == "cldnn":
        model = create_cldnn(filters_list=cfg["filters_list"],
                             lstm_units=cfg["lstm_units"],
                             fc_units=cfg["fc_units"],
                             kernel_sizes=cfg["kernel_sizes"],
                             dropout=cfg["dropout"])
    elif cfg["type"] == "tcn":
        model = create_tcn(list_n_filters=cfg["list_n_filters"],
                           kernel_size=cfg["kernel_size"],
                           dilations=cfg["dilations"],
                           nb_stacks=cfg["nb_stacks"],
                           activation=cfg["activation"],
                           n_layers=cfg["n_layers"],
                           dropout_rate=cfg["dropout_rate"],
                           use_skip_connections=cfg["use_skip_connections"],
                           bidirectional=cfg["bidirectional"])
    else:
        raise ValueError(
            "Configuration error: the specified model is not yet implemented.")

    if cfg["optimizer"]["name"] == "SGD":
        optimizer = optimizers.SGD(
            lr=cfg["optimizer"]["lr"], momentum=cfg["optimizer"]["momentum"], decay=cfg["optimizer"]["decay"])
    elif cfg["optimizer"]["name"] == "adam":
        optimizer = optimizers.adam(lr=cfg["optimizer"]["lr"],
                                    beta_1=cfg["optimizer"]["beta_1"],
                                    beta_2=cfg["optimizer"]["beta_2"],
                                    epsilon=cfg["optimizer"]["epsilon"],
                                    decay=cfg["optimizer"]["decay"],
                                    clipnorm=cfg["optimizer"]["clipnorm"])
    else:
        raise ValueError(
            "Configuration error: the specified optimizer is not yet implemented.")

    model.compile(optimizer, loss=config.LOSS, metrics=config.METRICS)

    model.summary()
    return model 
開發者ID:qlemaire22,項目名稱:speech-music-detection,代碼行數:45,代碼來源:model_loader.py


注:本文中的keras.optimizers.adam方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。