本文整理匯總了Python中keras.optimizers.Adadelta方法的典型用法代碼示例。如果您正苦於以下問題:Python optimizers.Adadelta方法的具體用法?Python optimizers.Adadelta怎麽用?Python optimizers.Adadelta使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.optimizers
的用法示例。
在下文中一共展示了optimizers.Adadelta方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: fit
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import Adadelta [as 別名]
def fit(self, train_X, val_X, nb_epoch=50, batch_size=100, feature_weights=None):
print 'Training autoencoder'
optimizer = Adadelta(lr=1.5)
# optimizer = Adam()
# optimizer = Adagrad()
if feature_weights is None:
self.autoencoder.compile(optimizer=optimizer, loss='binary_crossentropy') # kld, binary_crossentropy, mse
else:
print 'Using weighted loss'
self.autoencoder.compile(optimizer=optimizer, loss=weighted_binary_crossentropy(feature_weights)) # kld, binary_crossentropy, mse
self.autoencoder.fit(train_X[0], train_X[1],
nb_epoch=nb_epoch,
batch_size=batch_size,
shuffle=True,
validation_data=(val_X[0], val_X[1]),
callbacks=[
ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=0.01),
EarlyStopping(monitor='val_loss', min_delta=1e-5, patience=5, verbose=1, mode='auto'),
# ModelCheckpoint(self.model_save_path, monitor='val_loss', save_best_only=True, verbose=0),
]
)
return self
示例2: fit
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import Adadelta [as 別名]
def fit(self, train_X, val_X, nb_epoch=50, batch_size=100):
print 'Training variational autoencoder'
optimizer = Adadelta(lr=2.)
self.vae.compile(optimizer=optimizer, loss=self.vae_loss)
self.vae.fit(train_X[0], train_X[1],
shuffle=True,
epochs=nb_epoch,
batch_size=batch_size,
validation_data=(val_X[0], val_X[1]),
callbacks=[ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=0.01),
EarlyStopping(monitor='val_loss', min_delta=1e-5, patience=5, verbose=1, mode='auto'),
CustomModelCheckpoint(self.encoder, self.save_model, monitor='val_loss', save_best_only=True, mode='auto')
]
)
return self
示例3: fit
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import Adadelta [as 別名]
def fit(self, train_X, val_X, nb_epoch=50, batch_size=100, contractive=None):
optimizer = Adadelta(lr=2.)
# optimizer = Adam()
# optimizer = Adagrad()
if contractive:
print 'Using contractive loss, lambda: %s' % contractive
self.autoencoder.compile(optimizer=optimizer, loss=contractive_loss(self, contractive))
else:
print 'Using binary crossentropy'
self.autoencoder.compile(optimizer=optimizer, loss='binary_crossentropy') # kld, binary_crossentropy, mse
self.autoencoder.fit(train_X[0], train_X[1],
epochs=nb_epoch,
batch_size=batch_size,
shuffle=True,
validation_data=(val_X[0], val_X[1]),
callbacks=[
ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=0.01),
EarlyStopping(monitor='val_loss', min_delta=1e-5, patience=5, verbose=1, mode='auto'),
CustomModelCheckpoint(self.encoder, self.save_model, monitor='val_loss', save_best_only=True, mode='auto')
]
)
return self
示例4: get_optimizer
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import Adadelta [as 別名]
def get_optimizer(args):
clipvalue = 0
clipnorm = 10
if args.algorithm == 'rmsprop':
optimizer = opt.RMSprop(lr=0.001, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'sgd':
optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adagrad':
optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adadelta':
optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adam':
optimizer = opt.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adamax':
optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue)
return optimizer
示例5: get_optimizer
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import Adadelta [as 別名]
def get_optimizer(config):
if config.OPTIMIZER == 'SGD':
return SGD(lr=config.LEARNING_RATE, momentum=config.LEARNING_MOMENTUM, clipnorm=config.GRADIENT_CLIP_NORM, nesterov=config.NESTEROV)
elif config.OPTIMIZER == 'RMSprop':
return RMSprop(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM)
elif config.OPTIMIZER == 'Adagrad':
return Adagrad(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM)
elif config.OPTIMIZER == 'Adadelta':
return Adadelta(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM)
elif config.OPTIMIZER == 'Adam':
return Adam(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM, amsgrad=config.AMSGRAD)
elif config.OPTIMIZER == 'Adamax':
return Adamax(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM)
elif config.OPTIMIZER == 'Nadam':
return Nadam(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM)
else:
raise Exception('Unrecognized optimizer: {}'.format(config.OPTIMIZER))
示例6: get_optimizer
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import Adadelta [as 別名]
def get_optimizer(name='Adadelta'):
if name == 'SGD':
return optimizers.SGD(clipnorm=1.)
if name == 'RMSprop':
return optimizers.RMSprop(clipnorm=1.)
if name == 'Adagrad':
return optimizers.Adagrad(clipnorm=1.)
if name == 'Adadelta':
return optimizers.Adadelta(clipnorm=1.)
if name == 'Adam':
return optimizers.Adam(clipnorm=1.)
if name == 'Adamax':
return optimizers.Adamax(clipnorm=1.)
if name == 'Nadam':
return optimizers.Nadam(clipnorm=1.)
return optimizers.Adam(clipnorm=1.)
示例7: get_optimizer
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import Adadelta [as 別名]
def get_optimizer(args):
clipvalue = 0
clipnorm = 10
if args.algorithm == 'rmsprop':
optimizer = opt.RMSprop(lr=0.0001, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'sgd':
optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adagrad':
optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adadelta':
optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adam':
optimizer = opt.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adamax':
optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue)
return optimizer
示例8: get_optimizer
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import Adadelta [as 別名]
def get_optimizer(args):
clipvalue = 0
clipnorm = 10
if args.algorithm == 'rmsprop':
optimizer = opt.RMSprop(lr=0.0005, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'sgd':
optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adagrad':
optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adadelta':
optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adam':
optimizer = opt.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adamax':
optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue)
return optimizer
示例9: get_learning_rate
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import Adadelta [as 別名]
def get_learning_rate(self):
if hasattr(self.model, 'optimizer'):
config = self.model.optimizer.get_config()
from keras.optimizers import Adadelta, Adam, Adamax, Adagrad, RMSprop, SGD
if isinstance(self.model.optimizer, Adadelta) or isinstance(self.model.optimizer, Adam) \
or isinstance(self.model.optimizer, Adamax) or isinstance(self.model.optimizer, Adagrad)\
or isinstance(self.model.optimizer, RMSprop) or isinstance(self.model.optimizer, SGD):
return config['lr'] * (1. / (1. + config['decay'] * float(K.get_value(self.model.optimizer.iterations))))
elif 'lr' in config:
return config['lr']
示例10: S_LSTM
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import Adadelta [as 別名]
def S_LSTM(dimx = 30, dimy = 30, embedding_matrix=None, LSTM_neurons = 32):
inpx = Input(shape=(dimx,),dtype='int32',name='inpx')
x = word2vec_embedding_layer(embedding_matrix,train='False')(inpx)
inpy = Input(shape=(dimy,),dtype='int32',name='inpy')
y = word2vec_embedding_layer(embedding_matrix,train='False')(inpy)
#hx = LSTM(LSTM_neurons)(x)
#hy = LSTM(LSTM_neurons)(y)
shared_lstm = Bidirectional(LSTM(LSTM_neurons,return_sequences=False),merge_mode='sum')
#shared_lstm = LSTM(LSTM_neurons,return_sequences=True)
hx = shared_lstm(x)
#hx = Dropout(0.2)(hx)
hy = shared_lstm(y)
#hy = Dropout(0.2)(hy)
h1,h2=hx,hy
corr1 = Exp()([h1,h2])
adadelta = optimizers.Adadelta()
model = Model( [inpx,inpy],corr1)
model.compile( loss='binary_crossentropy',optimizer=adadelta)
return model
示例11: test_adadelta
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import Adadelta [as 別名]
def test_adadelta(self):
print('test Adadelta')
self.assertTrue(_test_optimizer(Adadelta()))
示例12: get_optimizer
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import Adadelta [as 別名]
def get_optimizer(config_data):
options = config_data['optimizer']
name = options['name']
if name == 'adadelta':
return optimizers.Adadelta(lr=options['lr'], rho=options['rho'], epsilon=options['epsilon'])
else:
return optimizers.SGD()
示例13: neural_network
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import Adadelta [as 別名]
def neural_network(domain_adaptation=False):
"""
moment alignment neural network (MANN)
- Zellinger, Werner, et al. "Robust unsupervised domain adaptation for
neural networks via moment alignment.", arXiv preprint arXiv:1711.06114, 2017
"""
# layer definition
input_s = Input(shape=(2,), name='souce_input')
input_t = Input(shape=(2,), name='target_input')
encoding = Dense(N_HIDDEN_NODES,
activation='sigmoid',
name='hidden')
prediction = Dense(N_CLASSES,
activation='softmax',
name='pred')
# network architecture
encoded_s = encoding(input_s)
encoded_t = encoding(input_t)
pred_s = prediction(encoded_s)
pred_t = prediction(encoded_t)
dense_s_t = merge([encoded_s,encoded_t], mode='concat', concat_axis=1)
# input/output definition
nn = Model(input=[input_s,input_t],
output=[pred_s,pred_t,dense_s_t])
# seperate model for activation visualization
visualize_model = Model(input=[input_s,input_t],
output=[encoded_s,encoded_t])
# compile model
if domain_adaptation==False:
cmd_weight = 0.
else:
# Please note that the loss weight of the cmd is one per default
# (see paper).
cmd_weight = 1.
nn.compile(loss=['categorical_crossentropy',
'categorical_crossentropy',cmd],
loss_weights=[1.,0.,cmd_weight],
optimizer=Adadelta(),
metrics=['accuracy'])
return nn, visualize_model
示例14: test_adadelta
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import Adadelta [as 別名]
def test_adadelta():
_test_optimizer(optimizers.Adadelta(), target=0.6)
_test_optimizer(optimizers.Adadelta(decay=1e-3), target=0.6)
示例15: make_deep_learning_model
# 需要導入模塊: from keras import optimizers [as 別名]
# 或者: from keras.optimizers import Adadelta [as 別名]
def make_deep_learning_model(hidden_layers=None, num_cols=None, optimizer='Adadelta', dropout_rate=0.2, weight_constraint=0, feature_learning=False, kernel_initializer='normal', activation='elu'):
if feature_learning == True and hidden_layers is None:
hidden_layers = [1, 0.75, 0.25]
if hidden_layers is None:
hidden_layers = [1, 0.75, 0.25]
# The hidden_layers passed to us is simply describing a shape. it does not know the num_cols we are dealing with, it is simply values of 0.5, 1, and 2, which need to be multiplied by the num_cols
scaled_layers = []
for layer in hidden_layers:
scaled_layers.append(min(int(num_cols * layer), 10))
# If we're training this model for feature_learning, our penultimate layer (our final hidden layer before the "output" layer) will always have 10 neurons, meaning that we always output 10 features from our feature_learning model
if feature_learning == True:
scaled_layers.append(10)
model = Sequential()
model.add(Dense(scaled_layers[0], input_dim=num_cols, kernel_initializer=kernel_initializer, kernel_regularizer=regularizers.l2(0.01)))
model.add(get_activation_layer(activation))
for layer_size in scaled_layers[1:-1]:
model.add(Dense(layer_size, kernel_initializer=kernel_initializer, kernel_regularizer=regularizers.l2(0.01)))
model.add(get_activation_layer(activation))
# There are times we will want the output from our penultimate layer, not the final layer, so give it a name that makes the penultimate layer easy to find
model.add(Dense(scaled_layers[-1], kernel_initializer=kernel_initializer, name='penultimate_layer', kernel_regularizer=regularizers.l2(0.01)))
model.add(get_activation_layer(activation))
# For regressors, we want an output layer with a single node
model.add(Dense(1, kernel_initializer=kernel_initializer))
# The final step is to compile the model
model.compile(loss='mean_squared_error', optimizer=get_optimizer(optimizer), metrics=['mean_absolute_error', 'mean_absolute_percentage_error'])
return model