當前位置: 首頁>>代碼示例>>Python>>正文


Python models.model_from_json方法代碼示例

本文整理匯總了Python中keras.models.model_from_json方法的典型用法代碼示例。如果您正苦於以下問題:Python models.model_from_json方法的具體用法?Python models.model_from_json怎麽用?Python models.model_from_json使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.models的用法示例。


在下文中一共展示了models.model_from_json方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import model_from_json [as 別名]
def __init__(self, architecture_file=None, weight_file=None, optimizer=None):
        # Generate mapping for softmax layer to characters
        output_str = '0123456789abcdefghijklmnopqrstuvwxyz '
        self.output = [x for x in output_str]
        self.L = len(self.output)

        # Load model and saved weights
        from keras.models import model_from_json
        if architecture_file is None:
            self.model = model_from_json(open('char2_architecture.json').read())
        else:
            self.model = model_from_json(open(architecture_file).read())

        if weight_file is None:
            self.model.load_weights('char2_weights.h5')
        else:
            self.model.load_weights(weight_file)

        if optimizer is None:
            from keras.optimizers import SGD
            optimizer = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
        self.model.compile(loss='categorical_crossentropy', optimizer=optimizer) 
開發者ID:mathDR,項目名稱:reading-text-in-the-wild,代碼行數:24,代碼來源:use_charnet.py

示例2: load_model

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import model_from_json [as 別名]
def load_model(json_path, weight_path, metrics=None, loss=None, optimizer=None, custom_objects=None, is_compile=True):
    with open(json_path, 'r') as f:
        model_json_string = json.load(f)
    model_json_dict = json.loads(model_json_string)
    model = model_from_json(model_json_string, custom_objects=custom_objects)
    model.load_weights(weight_path)

    if is_compile:
        if optimizer is None:
            optimizer = model_json_dict['optimizer']['name']

        if loss is None:
            loss = model_json_dict['loss']

        if metrics is None:
            model.compile(loss=loss, optimizer=optimizer)
        else:
            model.compile(loss=loss, optimizer=optimizer, metrics=metrics)

    return model 
開發者ID:CMU-CREATE-Lab,項目名稱:deep-smoke-machine,代碼行數:22,代碼來源:keras_utils.py

示例3: load_model

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import model_from_json [as 別名]
def load_model(stamp):
	"""
	"""

	json_file = open(stamp+'.json', 'r')
	loaded_model_json = json_file.read()
	json_file.close()
	model = model_from_json(loaded_model_json, {'AttentionWithContext': AttentionWithContext})

	model.load_weights(stamp+'.h5')
	print("Loaded model from disk")

	model.summary()


	adam = Adam(lr=0.001)
	model.compile(loss='binary_crossentropy',
		optimizer=adam,
		metrics=[f1_score])


	return model 
開發者ID:AlexGidiotis,項目名稱:Document-Classifier-LSTM,代碼行數:24,代碼來源:classifier.py

示例4: load

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import model_from_json [as 別名]
def load(self, name):
        # Create model input path
        inpath_model = os.path.join(self.config["model_path"],
                                    name + ".model.json")
        inpath_weights = os.path.join(self.config["model_path"],
                                      name + ".weights.h5")
        # Load json and create model
        json_file = open(inpath_model, 'r')
        loaded_model_json = json_file.read()
        json_file.close()
        self.model = model_from_json(loaded_model_json)
        # Load weights into new model
        self.model.load_weights(inpath_weights)
        # Compile model
        self.model.compile(optimizer=Adam(lr=self.config["learninig_rate"]),
                           loss=tversky_loss,
                           metrics=self.metrics) 
開發者ID:muellerdo,項目名稱:kits19.MIScnn,代碼行數:19,代碼來源:neural_network.py

示例5: __init__

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import model_from_json [as 別名]
def __init__(self, architecture_path=None, weights_path=None):
        self.bc = None
        try: 
            self.bc = BertClient() 
        except:
            raise Exception("PunchlineExtractor: Cannot instantiate BertClient. Is it running???")

        # check if we're loading in a pre-trained model
        if architecture_path is not None:
            assert(weights_path is not None)
            
            with open(architecture_path) as model_arch:
                model_arch_str = model_arch.read()
                self.model = model_from_json(model_arch_str)

            self.model.load_weights(weights_path)
        else:
            self.build_model() 
開發者ID:ijmarshall,項目名稱:robotreviewer,代碼行數:20,代碼來源:punchline_extractor.py

示例6: __init__

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import model_from_json [as 別名]
def __init__(self, nb_classes, resnet_layers, input_shape, weights):
        """Instanciate a PSPNet."""
        self.input_shape = input_shape
        json_path = join("weights", "keras", weights + ".json")
        h5_path = join("weights", "keras", weights + ".h5")
        if isfile(json_path) and isfile(h5_path):
            print("Keras model & weights found, loading...")
            with open(json_path, 'r') as file_handle:
                self.model = model_from_json(file_handle.read())
            self.model.load_weights(h5_path)
        else:
            print("No Keras model & weights found, import from npy weights.")
            self.model = layers.build_pspnet(nb_classes=nb_classes,
                                             resnet_layers=resnet_layers,
                                             input_shape=self.input_shape)
            self.set_npy_weights(weights) 
開發者ID:Vladkryvoruchko,項目名稱:PSPNet-Keras-tensorflow,代碼行數:18,代碼來源:pspnet-video.py

示例7: __init__

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import model_from_json [as 別名]
def __init__(self, nb_classes, resnet_layers, input_shape, weights):
        self.input_shape = input_shape
        self.num_classes = nb_classes

        json_path = join("weights", "keras", weights + ".json")
        h5_path = join("weights", "keras", weights + ".h5")
        if 'pspnet' in weights:
            if os.path.isfile(json_path) and os.path.isfile(h5_path):
                print("Keras model & weights found, loading...")
                with CustomObjectScope({'Interp': layers.Interp}):
                    with open(json_path) as file_handle:
                        self.model = model_from_json(file_handle.read())
                self.model.load_weights(h5_path)
            else:
                print("No Keras model & weights found, import from npy weights.")
                self.model = layers.build_pspnet(nb_classes=nb_classes,
                                                 resnet_layers=resnet_layers,
                                                 input_shape=self.input_shape)
                self.set_npy_weights(weights)
        else:
            print('Load pre-trained weights')
            self.model = load_model(weights) 
開發者ID:Vladkryvoruchko,項目名稱:PSPNet-Keras-tensorflow,代碼行數:24,代碼來源:pspnet.py

示例8: get_reconst_from_embed

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import model_from_json [as 別名]
def get_reconst_from_embed(self, embed, node_l=None, filesuffix=None):
        if filesuffix is None:
            if node_l is not None:
                return self._decoder.predict(
                    embed,
                    batch_size=self._n_batch)[:, node_l]
            else:
                return self._decoder.predict(embed, batch_size=self._n_batch)
        else:
            try:
                decoder = model_from_json(
                    open('decoder_model_' + filesuffix + '.json').read()
                )
            except:
                print('Error reading file: {0}. Cannot load previous model'.format('decoder_model_'+filesuffix+'.json'))
                exit()
            try:
                decoder.load_weights('decoder_weights_' + filesuffix + '.hdf5')
            except:
                print('Error reading file: {0}. Cannot load previous weights'.format('decoder_weights_'+filesuffix+'.hdf5'))
                exit()
            if node_l is not None:
                return decoder.predict(embed, batch_size=self._n_batch)[:, node_l]
            else:
                return decoder.predict(embed, batch_size=self._n_batch) 
開發者ID:palash1992,項目名稱:GEM-Benchmark,代碼行數:27,代碼來源:gcn.py

示例9: get_reconst_from_embed

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import model_from_json [as 別名]
def get_reconst_from_embed(self, embed, node_l=None, filesuffix=None):
        if filesuffix is None:
            if node_l is not None:
                return self._decoder.predict(
                    embed,
                    batch_size=self._n_batch
                )[:, node_l]
            else:
                return self._decoder.predict(embed, batch_size=self._n_batch)
        else:
            try:
                decoder = model_from_json(
                    open('decoder_model_' + filesuffix + '.json').read())
            except:
                print('Error reading file: {0}. Cannot load previous model'.format('decoder_model_'+filesuffix+'.json'))
                exit()
            try:
                decoder.load_weights('decoder_weights_'+filesuffix+'.hdf5')
            except:
                print('Error reading file: {0}. Cannot load previous weights'.format('decoder_weights_'+filesuffix+'.hdf5'))
                exit()
            if node_l is not None:
                return decoder.predict(embed, batch_size=self._n_batch)[:, node_l]
            else:
                return decoder.predict(embed, batch_size=self._n_batch) 
開發者ID:palash1992,項目名稱:GEM-Benchmark,代碼行數:27,代碼來源:vae.py

示例10: model_predict

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import model_from_json [as 別名]
def model_predict(X, pipeline):
    if model_type == "mlp":
        json_file = open(projectfolder + '/model.json', 'r')
        loaded_model_json = json_file.read()
        json_file.close()
        model = model_from_json(loaded_model_json)
        model.load_weights(projectfolder + "/weights.hdf5")
        model.compile(loss=pipeline['options']['loss'], optimizer=pipeline['options']['optimizer'],
                         metrics=pipeline['options']['scoring'])
        if type(X) is pandas.DataFrame:
            X = X.values
        Y = model.predict(X)
    else:
        picklefile = projectfolder + "/model.out"
        with open(picklefile, "rb") as f:
            model = pickle.load(f)
        Y = model.predict(X)

    return Y 
開發者ID:tech-quantum,項目名稱:sia-cog,代碼行數:21,代碼來源:pipelinecomponents.py

示例11: get_model

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import model_from_json [as 別名]
def get_model(self, filename=None):
        """Given a filename, load that model file; otherwise, generate a new model."""
        model = None
        if filename:
            info('attempting to load model {}'.format(filename))
            try:
                model = model_from_json(open(filename).read())
            except FileNotFoundError:
                print('could not load file {}'.format(filename))
                quit()
            print('loaded model file {}'.format(filename))
        else:
            print('no model file loaded, generating new model.')
            size = self.reversi.size ** 2
            model = Sequential()
            model.add(Dense(HIDDEN_SIZE, activation='relu', input_dim=size))
            # model.add(Dense(HIDDEN_SIZE, activation='relu'))
            model.add(Dense(size))

        model.compile(loss='mse', optimizer=optimizer)
        return model 
開發者ID:andysalerno,項目名稱:reversi_ai,代碼行數:23,代碼來源:q_learning_agent.py

示例12: __init__

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import model_from_json [as 別名]
def __init__(self, env):
        """Warp frames to 84x84 as done in the Nature paper and later work."""
        gym.ObservationWrapper.__init__(self, env)
        self.width = 84
        self.height = 84
        self.observation_space = spaces.Box(low=0, high=255,
            shape=(self.height, self.width, 1), dtype=np.uint8)
        #print("Load Keras Model!!!")
        # Load Keras model
        #self.json_name = './retro-movies/architecture_level_classifier_v5.json'
        #self.weight_name = './retro-movies/model_weights_level_classifier_v5.h5'
        #self.levelcls_model = model_from_json(open(self.json_name).read())
        #self.levelcls_model.load_weights(self.weight_name, by_name=True)
        ##self.levelcls_model.load_weights(self.weight_name)
        #print("Done Loading Keras Model!!!")
        #self.mean_pixel = [103.939, 116.779, 123.68]
        #self.warmup = 1000
        #self.interval = 500
        #self.counter = 0
        #self.num_inference = 0
        #self.max_inference = 5
        self.level_pred = [] 
開發者ID:flyyufelix,項目名稱:sonic_contest,代碼行數:24,代碼來源:atari_wrappers.py

示例13: load_AE

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import model_from_json [as 別名]
def load_AE(codec_prefix, print_summary=False):

    saveFilePrefix = "models/AE_codec/" + codec_prefix + "_"

    decoder_model_filename = saveFilePrefix + "decoder.json"
    decoder_weight_filename = saveFilePrefix + "decoder.h5"

    if not os.path.isfile(decoder_model_filename):
        raise Exception("The file for decoder model does not exist:{}".format(decoder_model_filename))
    json_file = open(decoder_model_filename, 'r')
    decoder = model_from_json(json_file.read(), custom_objects={"tf": tf})
    json_file.close()

    if not os.path.isfile(decoder_weight_filename):
        raise Exception("The file for decoder weights does not exist:{}".format(decoder_weight_filename))
    decoder.load_weights(decoder_weight_filename)

    if print_summary:
        print("Decoder summaries")
        decoder.summary()

    return decoder 
開發者ID:IBM,項目名稱:Contrastive-Explanation-Method,代碼行數:24,代碼來源:Utils.py

示例14: getout

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import model_from_json [as 別名]
def getout(self):
        #get and denormalize output units
    
        for k in range(1,len(self.outno)+1):
            self.output[k] = self.deo[k][1] * self.units[self.outno[k]] + self.deo[k][2]
			
			
#def dlscore():
    # Load the model
#	with open("model.json", "r") as json_file:
#	    loaded_model = model_from_json(json_file.read())

	# Load weights
#	loaded_model.load_weights("model.h5")

	# Compile the model
#	loaded_model.compile(
#		loss='mean_squared_error',
#		optimizer=keras.optimizers.Adam(lr=0.001),
#		metrics=[metrics.MSE])
	
#	return loaded_model 
開發者ID:sirimullalab,項目名稱:DLSCORE,代碼行數:24,代碼來源:NNScore2.01.02.py

示例15: __init__

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import model_from_json [as 別名]
def __init__(self, params):
        super(NeuralNetworkAlgorithm, self).__init__(params)

        self.library_version = keras.__version__

        self.rounds = additional.get("one_step", 1)
        self.max_iters = additional.get("max_steps", 1)
        self.learner_params = {
            "dense_layers": params.get("dense_layers"),
            "dense_1_size": params.get("dense_1_size"),
            "dense_2_size": params.get("dense_2_size"),
            "dropout": params.get("dropout"),
            "learning_rate": params.get("learning_rate"),
            "momentum": params.get("momentum"),
            "decay": params.get("decay"),
        }
        self.model = None  # we need input data shape to construct model

        if "model_architecture_json" in params:
            self.model = model_from_json(
                json.loads(params.get("model_architecture_json"))
            )
            self.compile_model()

        logger.debug("NeuralNetworkAlgorithm __init__") 
開發者ID:mljar,項目名稱:mljar-supervised,代碼行數:27,代碼來源:nn.py


注:本文中的keras.models.model_from_json方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。