當前位置: 首頁>>代碼示例>>Python>>正文


Python keras.models方法代碼示例

本文整理匯總了Python中keras.models方法的典型用法代碼示例。如果您正苦於以下問題:Python keras.models方法的具體用法?Python keras.models怎麽用?Python keras.models使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras的用法示例。


在下文中一共展示了keras.models方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: make_model_yaml

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import models [as 別名]
def make_model_yaml(template_yaml, model_json, output_yaml_path):
    #
    with open(template_yaml, 'r') as f:
        model_yaml = yaml.load(f)
    #
    # get the model config:
    json_file = open(model_json, 'r')
    loaded_model_json = json_file.read()
    json_file.close()
    loaded_model = keras.models.model_from_json(loaded_model_json)
    #
    model_yaml["schema"]["targets"] = []
    for oname, oshape in zip(loaded_model.output_names, loaded_model.output_shape):
        append_el ={"name":oname , "shape":str(oshape)#replace("None,", "")
        , "doc":"Methylation probability for %s"%oname}
        model_yaml["schema"]["targets"].append(append_el)
    #
    with open(output_yaml_path, 'w') as f:
        yaml.dump(model_yaml, f, default_flow_style=False) 
開發者ID:kipoi,項目名稱:models,代碼行數:21,代碼來源:prepare_model_yaml.py

示例2: make_secondary_dl_yaml

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import models [as 別名]
def make_secondary_dl_yaml(template_yaml, model_json, output_yaml_path):
    with open(template_yaml, 'r') as f:
        model_yaml = yaml.load(f)
    #
    # get the model config:
    json_file = open(model_json, 'r')
    loaded_model_json = json_file.read()
    json_file.close()
    loaded_model = keras.models.model_from_json(loaded_model_json)
    #
    model_yaml["output_schema"]["targets"] = []
    for oname, oshape in zip(loaded_model.output_names, loaded_model.output_shape):
        append_el ={"name":oname , "shape":str(oshape)#replace("None,", "")
        , "doc":"Methylation probability for %s"%oname}
        model_yaml["output_schema"]["targets"].append(append_el)
    #
    with open(output_yaml_path, 'w') as f:
        yaml.dump(model_yaml, f, default_flow_style=False) 
開發者ID:kipoi,項目名稱:models,代碼行數:20,代碼來源:prepare_model_yaml.py

示例3: __init__

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import models [as 別名]
def __init__(self, model_save_path='../models', 
              model_structure_name='seq2seq_model_demo', 
              model_weights_name='seq2seq_model_demo', 
              model_name=None):
        super().__init__()

        self.model_save_path = model_save_path
        self.model_structure_name=model_structure_name + self.model_name_format_str +'.json'
        self.model_weights_name=model_weights_name + self.model_name_format_str +'.h5'
        print('model_structure_name:', self.model_structure_name)
        print('model_weights_name:', self.model_weights_name)

        self.pred_result = None # Predicted mean value
        self.pred_var_result = None # Predicted variance value
        self.current_mean_val_loss = None
        self.EARLY_STOP=False
        self.val_loss_list=[]
        self.train_loss_list=[]
        self.pred_var_result = [] 
開發者ID:BruceBinBoxing,項目名稱:Deep_Learning_Weather_Forecasting,代碼行數:21,代碼來源:seq2seq_class.py

示例4: get_residual_model

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import models [as 別名]
def get_residual_model(is_mnist=True, img_channels=1, img_rows=28, img_cols=28):
    model = keras.models.Sequential()
    first_layer_channel = 128
    if is_mnist: # size to be changed to 32,32
        model.add(ZeroPadding2D((2,2), input_shape=(img_channels, img_rows, img_cols))) # resize (28,28)-->(32,32)
        # the first conv 
        model.add(Convolution2D(first_layer_channel, 3, 3, border_mode='same'))
    else:
        model.add(Convolution2D(first_layer_channel, 3, 3, border_mode='same', input_shape=(img_channels, img_rows, img_cols)))

    model.add(Activation('relu'))
    # [residual-based Conv layers]
    residual_blocks = design_for_residual_blocks(num_channel_input=first_layer_channel)
    model.add(residual_blocks)
    model.add(BatchNormalization(axis=1))
    model.add(Activation('relu'))
    # [Classifier]    
    model.add(Flatten())
    model.add(Dense(nb_classes))
    model.add(Activation('softmax'))
    # [END]
    return model 
開發者ID:keunwoochoi,項目名稱:residual_block_keras,代碼行數:24,代碼來源:example.py

示例5: compute_backbone_shapes

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import models [as 別名]
def compute_backbone_shapes(config, image_shape):
    """Computes the width and height of each stage of the backbone network.
    Returns:
        [N, (height, width)]. Where N is the number of stages
    """
    if callable(config.BACKBONE):
        return config.COMPUTE_BACKBONE_SHAPE(image_shape)

    # Currently supports ResNet only
    assert config.BACKBONE in ["resnet50", "resnet101"]
    return np.array(
        [[int(math.ceil(image_shape[0] / stride)),
            int(math.ceil(image_shape[1] / stride))]
            for stride in config.BACKBONE_STRIDES])


############################################################
#  Resnet Graph
############################################################

# Code adopted from:
# https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py 
開發者ID:dataiku,項目名稱:dataiku-contrib,代碼行數:24,代碼來源:model.py

示例6: predict

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import models [as 別名]
def predict(self, x):
        r"""
        Predict quantiles of the conditional distribution P(y|x).

        Forward propagates the inputs in `x` through the network to
        obtain the predicted quantiles `y`.

        Arguments:

            x(np.array): Array of shape `(n, m)` containing `n` m-dimensional inputs
                         for which to predict the conditional quantiles.

        Returns:

             Array of shape `(n, k)` with the columns corresponding to the k
             quantiles of the network.

        """
        predictions = np.stack(
            [m.predict((x - self.x_mean) / self.x_sigma) for m in self.models])
        return np.mean(predictions, axis=0) 
開發者ID:atmtools,項目名稱:typhon,代碼行數:23,代碼來源:qrnn.py

示例7: test_ShapGradientExplainer

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import models [as 別名]
def test_ShapGradientExplainer(self):

    #     model = VGG16(weights='imagenet', include_top=True)
    #     X, y = shap.datasets.imagenet50()
    #     to_explain = X[[39, 41]]
    #
    #     url = "https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json"
    #     fname = shap.datasets.cache(url)
    #     with open(fname) as f:
    #         class_names = json.load(f)
    #
    #     def map2layer(x, layer):
    #         feed_dict = dict(zip([model.layers[0].input], [preprocess_input(x.copy())]))
    #         return K.get_session().run(model.layers[layer].input, feed_dict)
    #
    #     e = GradientExplainer((model.layers[7].input, model.layers[-1].output),
    #                           map2layer(preprocess_input(X.copy()), 7))
    #     shap_values, indexes = e.explain_instance(map2layer(to_explain, 7), ranked_outputs=2)
    #
          print("Skipped Shap GradientExplainer") 
開發者ID:IBM,項目名稱:AIX360,代碼行數:22,代碼來源:test_shap.py

示例8: compute_backbone_shapes

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import models [as 別名]
def compute_backbone_shapes(config, image_shape):
    """Computes the width and height of each stage of the backbone network.

    Returns:
        [N, (height, width)]. Where N is the number of stages
    """
    if callable(config.BACKBONE):
        return config.COMPUTE_BACKBONE_SHAPE(image_shape)

    # Currently supports ResNet only
    assert config.BACKBONE in ["resnet50", "resnet101"]
    return np.array(
        [[int(math.ceil(image_shape[0] / stride)),
            int(math.ceil(image_shape[1] / stride))]
            for stride in config.BACKBONE_STRIDES])


############################################################
#  Resnet Graph
############################################################

# Code adopted from:
# https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py 
開發者ID:dmechea,項目名稱:PanopticSegmentation,代碼行數:25,代碼來源:model.py

示例9: _build_model

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import models [as 別名]
def _build_model(self, num_features, num_actions, max_history_len):
        """Build a keras model and return a compiled model.

        :param max_history_len: The maximum number of historical
                                turns used to decide on next action
        """
        from keras.layers import LSTM, Activation, Masking, Dense
        from keras.models import Sequential

        n_hidden = 32  # Neural Net and training params
        batch_shape = (None, max_history_len, num_features)
        # Build Model
        model = Sequential()
        model.add(Masking(-1, batch_input_shape=batch_shape))
        model.add(LSTM(n_hidden, batch_input_shape=batch_shape))
        model.add(Dense(input_dim=n_hidden, units=num_actions))
        model.add(Activation('softmax'))

        model.compile(loss='categorical_crossentropy',
                      optimizer='rmsprop',
                      metrics=['accuracy'])

        logger.debug(model.summary())
        return model 
開發者ID:Rowl1ng,項目名稱:rasa_wechat,代碼行數:26,代碼來源:keras_policy.py

示例10: tagSentences

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import models [as 別名]
def tagSentences(self, sentences):
        # Pad characters
        if 'characters' in self.params['featureNames']:
            self.padCharacters(sentences)

        labels = {}
        for modelName, model in self.models.items():
            paddedPredLabels = self.predictLabels(model, sentences)
            predLabels = []
            for idx in range(len(sentences)):
                unpaddedPredLabels = []
                for tokenIdx in range(len(sentences[idx]['tokens'])):
                    if sentences[idx]['tokens'][tokenIdx] != 0:  # Skip padding tokens
                        unpaddedPredLabels.append(paddedPredLabels[idx][tokenIdx])

                predLabels.append(unpaddedPredLabels)

            idx2Label = self.idx2Labels[modelName]
            labels[modelName] = [[idx2Label[tag] for tag in tagSentence] for tagSentence in predLabels]

        return labels 
開發者ID:UKPLab,項目名稱:elmo-bilstm-cnn-crf,代碼行數:23,代碼來源:ELMoBiLSTM.py

示例11: computeF1

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import models [as 別名]
def computeF1(self, modelName, sentences):
        labelKey = self.labelKeys[modelName]
        model = self.models[modelName]
        idx2Label = self.idx2Labels[modelName]
        
        correctLabels = [sentences[idx][labelKey] for idx in range(len(sentences))]
        predLabels = self.predictLabels(model, sentences)

        labelKey = self.labelKeys[modelName]
        encodingScheme = labelKey[labelKey.index('_')+1:]
        
        pre, rec, f1 = BIOF1Validation.compute_f1(predLabels, correctLabels, idx2Label, 'O', encodingScheme)
        pre_b, rec_b, f1_b = BIOF1Validation.compute_f1(predLabels, correctLabels, idx2Label, 'B', encodingScheme)
        
        if f1_b > f1:
            logging.debug("Setting wrong tags to B- improves from %.4f to %.4f" % (f1, f1_b))
            pre, rec, f1 = pre_b, rec_b, f1_b
        
        return pre, rec, f1 
開發者ID:UKPLab,項目名稱:elmo-bilstm-cnn-crf,代碼行數:21,代碼來源:ELMoBiLSTM.py

示例12: saveModel

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import models [as 別名]
def saveModel(self, modelName, epoch, dev_score, test_score):
        import json
        import h5py

        if self.modelSavePath == None:
            raise ValueError('modelSavePath not specified.')

        savePath = self.modelSavePath.replace("[DevScore]", "%.4f" % dev_score).replace("[TestScore]", "%.4f" % test_score).replace("[Epoch]", str(epoch+1)).replace("[ModelName]", modelName)

        directory = os.path.dirname(savePath)
        if not os.path.exists(directory):
            os.makedirs(directory)

        if os.path.isfile(savePath):
            logging.info("Model "+savePath+" already exists. Model will be overwritten")

        self.models[modelName].save(savePath, True)

        with h5py.File(savePath, 'a') as h5file:
            h5file.attrs['mappings'] = json.dumps(self.mappings)
            h5file.attrs['params'] = json.dumps(self.params)
            h5file.attrs['modelName'] = modelName
            h5file.attrs['labelKey'] = self.datasets[modelName]['label'] 
開發者ID:UKPLab,項目名稱:elmo-bilstm-cnn-crf,代碼行數:25,代碼來源:ELMoBiLSTM.py

示例13: shufflenetv2b_wd2

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import models [as 別名]
def shufflenetv2b_wd2(**kwargs):
    """
    ShuffleNetV2(b) 0.5x model from 'ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design,'
    https://arxiv.org/abs/1807.11164.

    Parameters:
    ----------
    pretrained : bool, default False
        Whether to load the pretrained weights for model.
    root : str, default '~/.keras/models'
        Location for keeping the model parameters.

    Returns
    -------
    functor
        Functor for model graph creation with extra fields.
    """
    return get_shufflenetv2b(
        width_scale=(12.0 / 29.0),
        model_name="shufflenetv2b_wd2",
        **kwargs) 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:23,代碼來源:shufflenetv2b.py

示例14: shufflenetv2b_w1

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import models [as 別名]
def shufflenetv2b_w1(**kwargs):
    """
    ShuffleNetV2(b) 1x model from 'ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design,'
    https://arxiv.org/abs/1807.11164.

    Parameters:
    ----------
    pretrained : bool, default False
        Whether to load the pretrained weights for model.
    root : str, default '~/.keras/models'
        Location for keeping the model parameters.

    Returns
    -------
    functor
        Functor for model graph creation with extra fields.
    """
    return get_shufflenetv2b(
        width_scale=1.0,
        model_name="shufflenetv2b_w1",
        **kwargs) 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:23,代碼來源:shufflenetv2b.py

示例15: shufflenetv2b_w3d2

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import models [as 別名]
def shufflenetv2b_w3d2(**kwargs):
    """
    ShuffleNetV2(b) 1.5x model from 'ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design,'
    https://arxiv.org/abs/1807.11164.

    Parameters:
    ----------
    pretrained : bool, default False
        Whether to load the pretrained weights for model.
    root : str, default '~/.keras/models'
        Location for keeping the model parameters.

    Returns
    -------
    functor
        Functor for model graph creation with extra fields.
    """
    return get_shufflenetv2b(
        width_scale=(44.0 / 29.0),
        model_name="shufflenetv2b_w3d2",
        **kwargs) 
開發者ID:osmr,項目名稱:imgclsmob,代碼行數:23,代碼來源:shufflenetv2b.py


注:本文中的keras.models方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。