當前位置: 首頁>>代碼示例>>Python>>正文


Python models.Input方法代碼示例

本文整理匯總了Python中keras.models.Input方法的典型用法代碼示例。如果您正苦於以下問題:Python models.Input方法的具體用法?Python models.Input怎麽用?Python models.Input使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.models的用法示例。


在下文中一共展示了models.Input方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_shallow_convnet

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import Input [as 別名]
def get_shallow_convnet(window_size=4096, channels=2, output_size=84):
    inputs = Input(shape=(window_size, channels))

    conv = ComplexConv1D(
        32, 512, strides=16,
        activation='relu')(inputs)
    pool = AveragePooling1D(pool_size=4, strides=2)(conv)

    pool = Permute([2, 1])(pool)
    flattened = Flatten()(pool)

    dense = ComplexDense(2048, activation='relu')(flattened)
    predictions = ComplexDense(
        output_size, 
        activation='sigmoid',
        bias_initializer=Constant(value=-5))(dense)
    predictions = GetReal(predictions)
    model = Model(inputs=inputs, outputs=predictions)

    model.compile(optimizer=Adam(lr=1e-4),
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    return model 
開發者ID:ChihebTrabelsi,項目名稱:deep_complex_networks,代碼行數:25,代碼來源:__init__.py

示例2: loadModel

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import Input [as 別名]
def loadModel(self):

        """
        'loadModel' is used to load the model into the CustomObjectDetection class
        :return: None
        """

        if self.__model_type == "yolov3":
            detection_model_json = json.load(open(self.__detection_config_json_path))

            self.__model_labels = detection_model_json["labels"]
            self.__model_anchors = detection_model_json["anchors"]

            self.__detection_utils = CustomDetectionUtils(labels=self.__model_labels)

            self.__model = yolo_main(Input(shape=(None, None, 3)), 3, len(self.__model_labels))

            self.__model.load_weights(self.__model_path) 
開發者ID:OlafenwaMoses,項目名稱:ImageAI,代碼行數:20,代碼來源:__init__.py

示例3: model

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import Input [as 別名]
def model(self):
    inputs_img = Input(shape=(self.img_height, self.img_width, self.num_channels))
    inputs_mask = Input(shape=(self.img_height, self.img_width, self.num_channels))
    
    inputs = Multiply()([inputs_img, inputs_mask])
    
    # Local discriminator
    l_dis = Conv2D(filters=64, kernel_size=5, strides=(2, 2), padding='same')(inputs)
    l_dis = LeakyReLU()(l_dis)
    l_dis = Conv2D(filters=128, kernel_size=5, strides=(2, 2), padding='same')(l_dis)
    l_dis = LeakyReLU()(l_dis)
    l_dis = Conv2D(filters=256, kernel_size=5, strides=(2, 2), padding='same')(l_dis)
    l_dis = LeakyReLU()(l_dis)
    l_dis = Conv2D(filters=512, kernel_size=5, strides=(2, 2), padding='same')(l_dis)
    l_dis = LeakyReLU()(l_dis)
    l_dis = Conv2D(filters=256, kernel_size=5, strides=(2, 2), padding='same')(l_dis)
    l_dis = LeakyReLU()(l_dis)
    l_dis = Conv2D(filters=128, kernel_size=5, strides=(2, 2), padding='same')(l_dis)
    l_dis = LeakyReLU()(l_dis)
    l_dis = Flatten()(l_dis)
    l_dis = Dense(units=1)(l_dis)
    
    model = Model(name=self.model_name, inputs=[inputs_img, inputs_mask], outputs=l_dis)
    return model 
開發者ID:tlatkowski,項目名稱:inpainting-gmcnn-keras,代碼行數:26,代碼來源:discriminator.py

示例4: build

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import Input [as 別名]
def build(self, **kwargs):
        self.vocab_size = len(self.token2idx)
        self.input = Input(shape=(self.len_max,), dtype='int32')
        self.output = Embedding(self.vocab_size+1,
                                self.embed_size,
                                input_length=self.len_max,
                                trainable=self.trainable,
                                )(self.input)
        self.model = Model(self.input, self.output) 
開發者ID:yongzhuo,項目名稱:Keras-TextClassification,代碼行數:11,代碼來源:embedding.py

示例5: create_tcn

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import Input [as 別名]
def create_tcn(list_n_filters=[8],
               kernel_size=4,
               dilations=[1, 2],
               nb_stacks=1,
               activation='norm_relu',
               n_layers=1,
               dropout_rate=0.05,
               use_skip_connections=True,
               bidirectional=True):
    if bidirectional:
        padding = 'same'
    else:
        padding = 'causal'

    dilations = process_dilations(dilations)

    input_layer = Input(shape=(None, config.N_MELS))

    for i in range(n_layers):
        if i == 0:
            x = TCN(list_n_filters[i], kernel_size, nb_stacks, dilations, activation,
                    padding, use_skip_connections, dropout_rate, return_sequences=True)(input_layer)
        else:
            x = TCN(list_n_filters[i], kernel_size, nb_stacks, dilations, activation,
                    padding, use_skip_connections, dropout_rate, return_sequences=True, name="tcn" + str(i))(x)

    x = Dense(config.CLASSES)(x)
    x = Activation('sigmoid')(x)
    output_layer = x

    return Model(input_layer, output_layer) 
開發者ID:qlemaire22,項目名稱:speech-music-detection,代碼行數:33,代碼來源:tcn.py

示例6: _get_model

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import Input [as 別名]
def _get_model(self):
        d = 0.5
        rd = 0.5
        rnn_units = 128
        input_text = Input((self.input_length,))
        text_embedding = Embedding(input_dim=self.max_words + 2, output_dim=self.emb_dim,
                                   input_length=self.input_length, mask_zero=True)(input_text)
        text_embedding = SpatialDropout1D(0.5)(text_embedding)
        bilstm = Bidirectional(LSTM(units=rnn_units, return_sequences=True, dropout=d,
                                    recurrent_dropout=rd))(text_embedding)
        x, attn = AttentionWeightedAverage(return_attention=True)(bilstm)
        x = Dropout(0.5)(x)
        out = Dense(units=self.n_classes, activation="softmax")(x)
        model = Model(input_text, out)
        return model 
開發者ID:tsterbak,項目名稱:keras_attention,代碼行數:17,代碼來源:models.py

示例7: build_model

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import Input [as 別名]
def build_model(self):
        '''建立模型'''

        # 輸入的dimension
        input_tensor = Input(shape=(self.config.max_len,))
        embedd = Embedding(len(self.num2word) + 2, 300, input_length=self.config.max_len)(input_tensor)
        lstm = Bidirectional(GRU(128, return_sequences=True))(embedd)
        # dropout = Dropout(0.6)(lstm)
        # lstm = LSTM(256)(dropout)
        # dropout = Dropout(0.6)(lstm)
        flatten = Flatten()(lstm)
        dense = Dense(len(self.words), activation='softmax')(flatten)
        self.model = Model(inputs=input_tensor, outputs=dense)
        optimizer = Adam(lr=self.config.learning_rate)
        self.model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) 
開發者ID:ioiogoo,項目名稱:poetry_generator_Keras,代碼行數:17,代碼來源:poetry_model.py

示例8: define_global_discriminator

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import Input [as 別名]
def define_global_discriminator(self, generator_raw, global_discriminator_raw):
    generator_inputs = Input(shape=(self.img_height, self.img_width, self.num_channels))
    generator_masks = Input(shape=(self.img_height, self.img_width, self.num_channels))
    
    real_samples = Input(shape=(self.img_height, self.img_width, self.num_channels))
    fake_samples = generator_raw.model([generator_inputs, generator_masks])
    # fake_samples = generator_inputs * (1 - generator_masks) + fake_samples * generator_masks
    fake_samples = Lambda(make_comp_sample)([generator_inputs, fake_samples, generator_masks])
    
    discriminator_output_from_fake_samples = global_discriminator_raw.model(fake_samples)
    discriminator_output_from_real_samples = global_discriminator_raw.model(real_samples)
    
    averaged_samples = custom_layers.RandomWeightedAverage()([real_samples, fake_samples])
    # We then run these samples through the discriminator as well. Note that we never
    # really use the discriminator output for these samples - we're only running them to
    # get the gradient norm for the gradient penalty loss.
    averaged_samples_outputs = global_discriminator_raw.model(averaged_samples)
    
    # The gradient penalty loss function requires the input averaged samples to get
    # gradients. However, Keras loss functions can only have two arguments, y_true and
    # y_pred. We get around this by making a partial() of the function with the averaged
    # samples here.
    partial_gp_loss = partial(gradient_penalty_loss,
                              averaged_samples=averaged_samples,
                              gradient_penalty_weight=self.gradient_penalty_loss_weight)
    # Functions need names or Keras will throw an error
    partial_gp_loss.__name__ = 'gradient_penalty'
    
    global_discriminator_model = Model(inputs=[real_samples, generator_inputs, generator_masks],
                                       outputs=[discriminator_output_from_real_samples,
                                                discriminator_output_from_fake_samples,
                                                averaged_samples_outputs])
    # We use the Adam paramaters from Gulrajani et al. We use the Wasserstein loss for both
    # the real and generated samples, and the gradient penalty loss for the averaged samples
    global_discriminator_model.compile(optimizer=self.discriminator_optimizer,
                                       loss=[wasserstein_loss, wasserstein_loss, partial_gp_loss])
    
    return global_discriminator_model 
開發者ID:tlatkowski,項目名稱:inpainting-gmcnn-keras,代碼行數:40,代碼來源:gmcnn_gan.py

示例9: define_local_discriminator

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import Input [as 別名]
def define_local_discriminator(self, generator_raw, local_discriminator_raw):
    generator_inputs = Input(shape=(self.img_height, self.img_width, self.num_channels))
    generator_masks = Input(shape=(self.img_height, self.img_width, self.num_channels))
    
    real_samples = Input(shape=(self.img_height, self.img_width, self.num_channels))
    fake_samples = generator_raw.model([generator_inputs, generator_masks])
    # fake_samples = generator_inputs * (1 - generator_masks) + fake_samples * generator_masks
    # fake_samples = Lambda(make_comp_sample)([generator_inputs, fake_samples, generator_masks])
    
    discriminator_output_from_fake_samples = local_discriminator_raw.model(
      [fake_samples, generator_masks])
    discriminator_output_from_real_samples = local_discriminator_raw.model(
      [real_samples, generator_masks])
    
    averaged_samples = custom_layers.RandomWeightedAverage()([real_samples, fake_samples])
    averaged_samples_output = local_discriminator_raw.model([averaged_samples, generator_masks])
    
    partial_gp_loss = partial(gradient_penalty_loss,
                              averaged_samples=averaged_samples,
                              gradient_penalty_weight=self.gradient_penalty_loss_weight)
    partial_gp_loss.__name__ = 'gradient_penalty'
    
    local_discriminator_model = Model(inputs=[real_samples, generator_inputs, generator_masks],
                                      outputs=[discriminator_output_from_real_samples,
                                               discriminator_output_from_fake_samples,
                                               averaged_samples_output])
    
    local_discriminator_model.compile(optimizer=self.discriminator_optimizer,
                                      loss=[wasserstein_loss, wasserstein_loss, partial_gp_loss])
    return local_discriminator_model 
開發者ID:tlatkowski,項目名稱:inpainting-gmcnn-keras,代碼行數:32,代碼來源:gmcnn_gan.py

示例10: model

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import Input [as 別名]
def model():
    input = Input(shape=(224, 224, 3))
    x = conv_batch_norm_relu(input, 32, (3, 3), padding='same', activation='relu')
    x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(x)

    x = conv_batch_norm_relu(x, 64, (3, 3), padding='same', activation='relu')
    x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(x)

    x = conv_batch_norm_relu(x, 128, (3, 3), padding='same', activation='relu')
    x = conv_batch_norm_relu(x, 64, (1, 1), padding='same', activation='relu')
    x = conv_batch_norm_relu(x, 128, (3, 3), padding='same', activation='relu')
    x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(x)

    x = conv_batch_norm_relu(x, 256, (3, 3), padding='same', activation='relu')
    x = conv_batch_norm_relu(x, 128, (1, 1), padding='same', activation='relu')
    x = conv_batch_norm_relu(x, 256, (3, 3), padding='same', activation='relu')
    x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(x)

    x = conv_batch_norm_relu(x, 512, (3, 3), padding='same', activation='relu')
    x = conv_batch_norm_relu(x, 256, (1, 1), padding='same', activation='relu')
    x = conv_batch_norm_relu(x, 512, (3, 3), padding='same', activation='relu')
    x = conv_batch_norm_relu(x, 256, (1, 1), padding='same', activation='relu')
    x = conv_batch_norm_relu(x, 512, (3, 3), padding='same', activation='relu')
    x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(x)

    x = conv_batch_norm_relu(x, 1024, (3, 3), padding='same', activation='relu')
    x = conv_batch_norm_relu(x, 512, (1, 1), padding='same', activation='relu')
    x = conv_batch_norm_relu(x, 1024, (3, 3), padding='same', activation='relu')
    x = conv_batch_norm_relu(x, 512, (1, 1), padding='same', activation='relu')
    x = conv_batch_norm_relu(x, 1024, (3, 3), padding='same', activation='relu')
    x = Conv2D(5, (1, 1), padding='same')(x)
    x = BatchNormalization()(x)
    x = Activation('sigmoid', name='output')(x)
    return Model(inputs=input, outputs=x) 
開發者ID:MahmudulAlam,項目名稱:Unified-Gesture-and-Fingertip-Detection,代碼行數:36,代碼來源:darknet.py

示例11: create_dagmm_model

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import Input [as 別名]
def create_dagmm_model(encoder, decoder, estimation_encoder, lambd_diag=0.005):
    x_in = Input(batch_shape=encoder.input_shape)
    zc = encoder(x_in)

    decoder.name = 'reconstruction'
    x_rec = decoder(zc)
    euclid_dist = Lambda(lambda args: K.sqrt(K.sum(K.batch_flatten(K.square(args[0] - args[1])),
                                                   axis=-1, keepdims=True) /
                                             K.sum(K.batch_flatten(K.square(args[0])),
                                                   axis=-1, keepdims=True)),
                         output_shape=(1,))([x_in, x_rec])
    cos_sim = Lambda(lambda args: K.batch_dot(K.l2_normalize(K.batch_flatten(args[0]), axis=-1),
                                              K.l2_normalize(K.batch_flatten(args[1]), axis=-1),
                                              axes=-1),
                     output_shape=(1,))([x_in, x_rec])

    zr = concatenate([euclid_dist, cos_sim])
    z = concatenate([zc, zr])

    gamma = estimation_encoder(z)

    gamma_ks = [Lambda(lambda g: g[:, k:k + 1], output_shape=(1,))(gamma)
                for k in range(estimation_encoder.output_shape[-1])]

    components = [GaussianMixtureComponent(lambd_diag)([z, gamma_k])
                  for gamma_k in gamma_ks]
    density = add(components) if len(components) > 1 else components[0]
    energy = Lambda(lambda dens: -K.log(dens), name='energy')(density)

    dagmm = Model(x_in, [x_rec, energy])

    return dagmm 
開發者ID:izikgo,項目名稱:AnomalyDetectionTransformations,代碼行數:34,代碼來源:dagmm.py

示例12: CNN_BIGRU

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import Input [as 別名]
def CNN_BIGRU():
    # Inp is one-hot encoded version of inp_alt
    inp          = Input(shape=(maxlen_seq, n_words))
    inp_alt      = Input(shape=(maxlen_seq,))
    inp_profiles = Input(shape=(maxlen_seq, 22))

    # Concatenate embedded and unembedded input
    x_emb = Embedding(input_dim=n_words, output_dim=64, 
                      input_length=maxlen_seq)(inp_alt)
    x = Concatenate(axis=-1)([inp, x_emb, inp_profiles])

    x = super_conv_block(x)
    x = conv_block(x)
    x = super_conv_block(x)
    x = conv_block(x)
    x = super_conv_block(x)
    x = conv_block(x)

    x = Bidirectional(CuDNNGRU(units = 256, return_sequences = True, recurrent_regularizer=l2(0.2)))(x)
    x = TimeDistributed(Dropout(0.5))(x)
    x = TimeDistributed(Dense(256, activation = "relu"))(x)
    x = TimeDistributed(Dropout(0.5))(x)
    
    y = TimeDistributed(Dense(n_tags, activation = "softmax"))(x)
    
    model = Model([inp, inp_alt, inp_profiles], y)
    
    return model 
開發者ID:idrori,項目名稱:cu-ssp,代碼行數:30,代碼來源:model_1.py

示例13: build_model

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import Input [as 別名]
def build_model():
  input = Input(shape = (None, ))
  profiles_input = Input(shape = (None, 22))

  # Defining an embedding layer mapping from the words (n_words) to a vector of len 128
  x1 = Embedding(input_dim = n_words, output_dim = 250, input_length = None)(input)  
  x1 = concatenate([x1, profiles_input], axis = 2)
  
  x2 = Embedding(input_dim = n_words, output_dim = 125, input_length = None)(input)
  x2 = concatenate([x2, profiles_input], axis = 2)

  x1 = Dense(1200, activation = "relu")(x1)
  x1 = Dropout(0.5)(x1)

  # Defining a bidirectional LSTM using the embedded representation of the inputs
  x2 = Bidirectional(CuDNNGRU(units = 500, return_sequences = True))(x2)
  x2 = Bidirectional(CuDNNGRU(units = 100, return_sequences = True))(x2)
  COMBO_MOVE = concatenate([x1, x2])
  w = Dense(500, activation = "relu")(COMBO_MOVE) # try 500
  w = Dropout(0.4)(w)
  w = tcn.TCN()(w)
  y = TimeDistributed(Dense(n_tags, activation = "softmax"))(w)

  # Defining the model as a whole and printing the summary
  model = Model([input, profiles_input], y)
  #model.summary()

  # Setting up the model with categorical x-entropy loss and the custom accuracy function as accuracy
  adamOptimizer = Adam(lr=0.0025, beta_1=0.8, beta_2=0.8, epsilon=None, decay=0.0001, amsgrad=False) 
  model.compile(optimizer = adamOptimizer, loss = "categorical_crossentropy", metrics = ["accuracy", accuracy])
  return model


# Defining the decoders so that we can 
開發者ID:idrori,項目名稱:cu-ssp,代碼行數:36,代碼來源:model_3.py

示例14: get_deep_convnet

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import Input [as 別名]
def get_deep_convnet(window_size=4096, channels=2, output_size=84):
    inputs = Input(shape=(window_size, channels))
    outs = inputs

    outs = (ComplexConv1D(
        16, 6, strides=2, padding='same',
        activation='linear',
        kernel_initializer='complex_independent'))(outs)
    outs = (ComplexBN(axis=-1))(outs)
    outs = (keras.layers.Activation('relu'))(outs)
    outs = (keras.layers.AveragePooling1D(pool_size=2, strides=2))(outs)

    outs = (ComplexConv1D(
        32, 3, strides=2, padding='same',
        activation='linear',
        kernel_initializer='complex_independent'))(outs)
    outs = (ComplexBN(axis=-1))(outs)
    outs = (keras.layers.Activation('relu'))(outs)
    outs = (keras.layers.AveragePooling1D(pool_size=2, strides=2))(outs)
    
    outs = (ComplexConv1D(
        64, 3, strides=1, padding='same',
        activation='linear',
        kernel_initializer='complex_independent'))(outs)
    outs = (ComplexBN(axis=-1))(outs)
    outs = (keras.layers.Activation('relu'))(outs)
    outs = (keras.layers.AveragePooling1D(pool_size=2, strides=2))(outs)

    outs = (ComplexConv1D(
        64, 3, strides=1, padding='same',
        activation='linear',
        kernel_initializer='complex_independent'))(outs)
    outs = (ComplexBN(axis=-1))(outs)
    outs = (keras.layers.Activation('relu'))(outs)
    outs = (keras.layers.AveragePooling1D(pool_size=2, strides=2))(outs)

    outs = (ComplexConv1D(
        128, 3, strides=1, padding='same',
        activation='relu',
        kernel_initializer='complex_independent'))(outs)
    outs = (ComplexConv1D(
        128, 3, strides=1, padding='same',
        activation='linear',
        kernel_initializer='complex_independent'))(outs)
    outs = (ComplexBN(axis=-1))(outs)
    outs = (keras.layers.Activation('relu'))(outs)
    outs = (keras.layers.AveragePooling1D(pool_size=2, strides=2))(outs)

    #outs = (keras.layers.MaxPooling1D(pool_size=2))
    #outs = (Permute([2, 1]))
    outs = (keras.layers.Flatten())(outs)
    outs = (keras.layers.Dense(2048, activation='relu',
                           kernel_initializer='glorot_normal'))(outs)
    predictions = (keras.layers.Dense(output_size, activation='sigmoid',
                                 bias_initializer=keras.initializers.Constant(value=-5)))(outs)

    model = Model(inputs=inputs, outputs=predictions)
    model.compile(optimizer=keras.optimizers.Adam(lr=1e-4),
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    return model 
開發者ID:ChihebTrabelsi,項目名稱:deep_complex_networks,代碼行數:63,代碼來源:__init__.py

示例15: vggnet_keras

# 需要導入模塊: from keras import models [as 別名]
# 或者: from keras.models import Input [as 別名]
def vggnet_keras():

    # Block 1
    img_input = Input((3, 224, 224))
    x = Conv2D(64, (3, 3), activation='relu',
               padding='same', name='features.0')(img_input)
    x = Conv2D(64, (3, 3), activation='relu',
               padding='same', name='features.2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = Conv2D(128, (3, 3), activation='relu',
               padding='same', name='features.5')(x)
    x = Conv2D(128, (3, 3), activation='relu',
               padding='same', name='features.7')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = Conv2D(256, (3, 3), activation='relu',
               padding='same', name='features.10')(x)
    x = Conv2D(256, (3, 3), activation='relu',
               padding='same', name='features.12')(x)
    x = Conv2D(256, (3, 3), activation='relu',
               padding='same', name='features.14')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = Conv2D(512, (3, 3), activation='relu',
               padding='same', name='features.17')(x)
    x = Conv2D(512, (3, 3), activation='relu',
               padding='same', name='features.19')(x)
    x = Conv2D(512, (3, 3), activation='relu',
               padding='same', name='features.21')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = Conv2D(512, (3, 3), activation='relu',
               padding='same', name='features.24')(x)
    x = Conv2D(512, (3, 3), activation='relu',
               padding='same', name='features.26')(x)
    x = Conv2D(512, (3, 3), activation='relu',
               padding='same', name='features.28')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

    x = Flatten(name='flatten')(x)
    x = Dense(4096, activation='relu', name='classifier.0')(x)
    x = Dropout(0.5)(x)
    x = Dense(4096, activation='relu', name='classifier.3')(x)
    x = Dropout(0.5)(x)
    x = Dense(1000, activation=None, name='classifier.6')(x)

    # Create model.
    model = Model(img_input, x, name='vgg16')

    return model 
開發者ID:gzuidhof,項目名稱:nn-transfer,代碼行數:57,代碼來源:vggnet.py


注:本文中的keras.models.Input方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。