當前位置: 首頁>>代碼示例>>Python>>正文


Python keras.metrics方法代碼示例

本文整理匯總了Python中keras.metrics方法的典型用法代碼示例。如果您正苦於以下問題:Python keras.metrics方法的具體用法?Python keras.metrics怎麽用?Python keras.metrics使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras的用法示例。


在下文中一共展示了keras.metrics方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: lstm_model

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import metrics [as 別名]
def lstm_model(input_shape, hidden = 256, targets = 1, learn_rate = 1e-4, multiclass=False):
    model = Sequential()
    model.add(Bidirectional(LSTM(hidden), merge_mode = 'concat'))
    model.add(Activation('tanh'))
    model.add(Dropout(0.5))

    if (targets > 1) and not multiclass:
        model.add(Bidirectional(LSTM(hidden), merge_mode = 'concat'))
        model.add(Activation('tanh'))
        model.add(Dropout(0.5))
    
    model.add(Dense(targets))
    if multiclass:
        model.add(Activation('softmax'))
        model.compile(loss='categorical_crossentropy', 
                  optimizer=Adam(lr=learn_rate, beta_1 =.5 ), metrics=['categorical_accuracy'])
    else:
        model.add(Activation ('sigmoid'))
        model.compile(loss='binary_crossentropy', 
                  optimizer=Adam(lr=learn_rate, beta_1 =.5 ), metrics=['accuracy'])
    return (model) 
開發者ID:illidanlab,項目名稱:urgent-care-comparative,代碼行數:23,代碼來源:deep_models.py

示例2: cnn_model

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import metrics [as 別名]
def cnn_model(input_shape, hidden = 256, targets = 1, learn_rate = 1e-4):
    model = Sequential()
    model.add(Convolution1D(input_shape = input_shape, nb_filter = 64, filter_length = 3, border_mode = 'same', activation = 'relu'))
    model.add(MaxPooling1D(pool_length = 3))
    model.add(Bidirectional(LSTM(hidden), merge_mode = 'concat'))
    model.add(Activation('tanh'))
    model.add(Dropout(0.5))
    model.add(Dense(targets))
    if multiclass:
        model.add(Activation('softmax'))
        model.compile(loss='categorical_crossentropy', 
                  optimizer=Adam(lr=learn_rate, beta_1 =.5 ), metrics=['categorical_accuracy'])
    else:
        model.add(Activation ('sigmoid'))
        model.compile(loss='binary_crossentropy', 
                  optimizer=Adam(lr=learn_rate, beta_1 =.5 ), metrics=['accuracy'])
    return (model) 
開發者ID:illidanlab,項目名稱:urgent-care-comparative,代碼行數:19,代碼來源:deep_models.py

示例3: mlp_model

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import metrics [as 別名]
def mlp_model(input_shape, hidden =512, targets = 1, multiclass = False, learn_rate = 1e-4):
    model = Sequential()
    model.add(Dense(hidden, activation = 'relu', input_shape = input_shape))
    model.add(Dropout(.5))
    model.add(Dense(hidden, activation = 'relu'))
    model.add(Dropout(.5))
    model.add(Dense(hidden, activation = 'relu'))
    model.add(Dropout(.5))
    model.add(Dense(targets))
    if multiclass:
        model.add(Activation('softmax'))
        model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=learn_rate, beta_1 =.5 ), 
                      metrics=['categorical_accuracy'])
    else:
        model.add(Activation('sigmoid'))
        model.compile(loss='binary_crossentropy', optimizer=Adam(lr=learn_rate, beta_1 =.5 ), metrics=['accuracy'])
    return (model) 
開發者ID:illidanlab,項目名稱:urgent-care-comparative,代碼行數:19,代碼來源:deep_models.py

示例4: hierarchical_cnn

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import metrics [as 別名]
def hierarchical_cnn (input_shape, aux_shape, targets = 1, hidden = 256, multiclass = False, learn_rate=1e-4):
    x = Input(shape = input_shape, name = 'x')
    xx = Convolution1D(nb_filter = 64, filter_length = 3, border_mode = 'same', activation = 'relu') (x)
    xx = MaxPooling1D(pool_length = 3) (xx)
    
    xx = Bidirectional(LSTM (256, activation = 'relu'), merge_mode = 'concat') (xx)
    xx = Dropout(0.5)(xx)
    
    dx = Input(shape = aux_shape, name = 'aux')

    xx = concatenate([xx, dx])
    if multiclass:
        y = Dense(targets, activation = 'softmax') (xx)
        model = Model(inputs = [x, dx], outputs = [y])
        model.compile (loss = 'categorical_crossentropy', optimizer = Adam(lr = learn_rate), metrics = ['categorical_accuracy'])
    else:
        y = Dense(targets, activation = 'sigmoid') (xx)
        model = Model(inputs = [x, dx], outputs = [y])
        model.compile (loss = 'binary_crossentropy', optimizer = Adam(lr = learn_rate), metrics = ['accuracy'])
    return (model) 
開發者ID:illidanlab,項目名稱:urgent-care-comparative,代碼行數:22,代碼來源:deep_models.py

示例5: hierarchical_lstm

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import metrics [as 別名]
def hierarchical_lstm (input_shape, aux_shape, targets = 1, hidden = 256, multiclass = False, learn_rate = 1e-4):
    x = Input(shape = input_shape, name = 'x')    
    xx = Bidirectional(LSTM (hidden, activation = 'relu'), merge_mode = 'concat') (x)
    xx = Dropout(0.5)(xx)
    
    dx = Input(shape = aux_shape, name = 'aux')

    xx = concatenate([xx, dx])
    xx = Dense(512, activation = 'relu') (xx)
    if multiclass:
        y = Dense(targets, activation = 'softmax') (xx)
        model = Model(inputs = [x, dx], outputs = [y])
        model.compile (loss = 'categorical_crossentropy', optimizer = Adam(lr = learn_rate), metrics = ['categorical_accuracy'])
    else:
        y = Dense(targets, activation = 'sigmoid') (xx)
        model = Model(inputs = [x, dx], outputs = [y])
        model.compile (loss = 'binary_crossentropy', optimizer = Adam(lr = learn_rate), metrics = ['accuracy'])
    return (model) 
開發者ID:illidanlab,項目名稱:urgent-care-comparative,代碼行數:20,代碼來源:deep_models.py

示例6: infer_on_batch

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import metrics [as 別名]
def infer_on_batch(self, batch, labels=None):
        """
        Method infers the model on the given batch
        Args:
            batch - list of texts
            labels - list of labels

        Returns:
            loss and metrics values on the given batch, if labels are given
            predictions, otherwise
        """
        texts = batch
        if labels:
            features = self.texts2vec(texts)
            onehot_labels = labels2onehot(labels, classes=self.classes)
            metrics_values = self.model.test_on_batch(features, onehot_labels.reshape(-1, self.n_classes))
            return metrics_values
        else:
            features = self.texts2vec(texts)
            predictions = self.model.predict(features)
            return predictions 
開發者ID:deepmipt,項目名稱:intent_classifier,代碼行數:23,代碼來源:multiclass.py

示例7: evaluate

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import metrics [as 別名]
def evaluate(self, data, fn_inverse=None, horizon=1, fn_plot=None):
        """
        Evaluate model
        :return:
        """
        encoder_input_data, decoder_input_exog, y = data

        y_hat = self.predict(encoder_inputs=encoder_input_data,
                             pred_steps=horizon,
                             decoder_input_exog=decoder_input_exog)

        if fn_inverse is not None:
            y = fn_inverse(y)
            y_hat = fn_inverse(y_hat)

        y = np.float32(y)
        y_hat = np.float32(y_hat)

        if fn_plot is not None:
            fn_plot([y,y_hat])

        results = []
        for m in self.model.metrics:
            if isinstance(m, str):
                results.append(K.eval(K.mean(get(m)(y, y_hat))))
            else:
                results.append(K.eval(K.mean(m(y, y_hat))))
        return results 
開發者ID:albertogaspar,項目名稱:dts,代碼行數:30,代碼來源:Seq2Seq.py

示例8: train_on_batch

# 需要導入模塊: import keras [as 別名]
# 或者: from keras import metrics [as 別名]
def train_on_batch(self, batch):
        """
        Method trains the intent_model on the given batch
        Args:
            batch - list of tuples (preprocessed text, labels)

        Returns:
            loss and metrics values on the given batch
        """
        texts = list(batch[0])
        labels = list(batch[1])
        features = self.texts2vec(texts)
        onehot_labels = labels2onehot(labels, classes=self.classes)
        metrics_values = self.model.train_on_batch(features, onehot_labels)
        return metrics_values 
開發者ID:deepmipt,項目名稱:intent_classifier,代碼行數:17,代碼來源:multiclass.py


注:本文中的keras.metrics方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。