當前位置: 首頁>>代碼示例>>Python>>正文


Python losses.mean_absolute_error方法代碼示例

本文整理匯總了Python中keras.losses.mean_absolute_error方法的典型用法代碼示例。如果您正苦於以下問題:Python losses.mean_absolute_error方法的具體用法?Python losses.mean_absolute_error怎麽用?Python losses.mean_absolute_error使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.losses的用法示例。


在下文中一共展示了losses.mean_absolute_error方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: dummy_1_build_fn

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import mean_absolute_error [as 別名]
def dummy_1_build_fn(input_shape=(1,)):
    model = Sequential(
        [
            Embedding(input_dim=9999, output_dim=200, input_length=100, trainable=True),
            SpatialDropout1D(rate=0.5),
            Flatten(),
            Dense(100, activation="relu"),
            Dense(1, activation="sigmoid"),
        ]
    )
    model.compile(
        optimizer=RMSprop(lr=0.02, decay=0.001),
        loss=mean_absolute_error,
        metrics=["mean_absolute_error"],
    )
    return model 
開發者ID:HunterMcGushion,項目名稱:hyperparameter_hunter,代碼行數:18,代碼來源:test_keras_helper.py

示例2: l1

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import mean_absolute_error [as 別名]
def l1(y_true, y_pred):
    """ L1 metric (MAE) """
    return losses.mean_absolute_error(y_true, y_pred) 
開發者ID:voxelmorph,項目名稱:voxelmorph,代碼行數:5,代碼來源:metrics.py

示例3: photometric_consistency_loss

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import mean_absolute_error [as 別名]
def photometric_consistency_loss(alpha):
    def loss(y_true, y_pred):
        return alpha * ssim(y_true, y_pred) + (1 - alpha) * mean_absolute_error(y_true, y_pred)

    return loss 
開發者ID:drmaj,項目名稱:UnDeepVO,代碼行數:7,代碼來源:losses.py

示例4: anomaly_correlation

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import mean_absolute_error [as 別名]
def anomaly_correlation(y_true, y_pred, mean=0., regularize_mean='mse', reverse=True):
    """
    Calculate the anomaly correlation. FOR NOW, ASSUMES THAT THE CLIMATOLOGICAL MEAN IS 0, AND THEREFORE REQUIRES DATA
    TO BE SCALED TO REMOVE SPATIALLY-DEPENDENT MEAN.

    :param y_true: Tensor: target values
    :param y_pred: Tensor: model-predicted values
    :param mean: float: subtract this global mean from all predicted and target array values. IGNORED FOR NOW.
    :param regularize_mean: str or None: if not None, also penalizes a form of mean squared error:
        global: penalize differences in the global mean
        spatial: penalize differences in spatially-averaged mean (last two dimensions)
        mse: penalize the mean squared error
        mae: penalize the mean absolute error
    :param reverse: bool: if True, inverts the loss so that -1 is the target score
    :return: float: anomaly correlation loss
    """
    if regularize_mean is not None:
        assert regularize_mean in ['global', 'spatial', 'mse', 'mae']
    a = (K.mean(y_pred * y_true)
         / K.sqrt(K.mean(K.square(y_pred)) * K.mean(K.square(y_true))))
    if regularize_mean is not None:
        if regularize_mean == 'global':
            m = K.abs((K.mean(y_true) - K.mean(y_pred)) / K.mean(y_true))
        elif regularize_mean == 'spatial':
            m = K.mean(K.abs((K.mean(y_true, axis=[-2, -1]) - K.mean(y_pred, axis=[-2, -1]))
                             / K.mean(y_true, axis=[-2, -1])))
        elif regularize_mean == 'mse':
            m = mean_squared_error(y_true, y_pred)
        elif regularize_mean == 'mae':
            m = mean_absolute_error(y_true, y_pred)
    if reverse:
        if regularize_mean is not None:
            return m - a
        else:
            return -a
    else:
        if regularize_mean:
            return a - m
        else:
            return a 
開發者ID:jweyn,項目名稱:DLWP,代碼行數:42,代碼來源:custom.py

示例5: loss_dict

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import mean_absolute_error [as 別名]
def loss_dict(self):
        """ Return the loss dict """
        loss_dict = dict(mae=losses.mean_absolute_error,
                         mse=losses.mean_squared_error,
                         logcosh=losses.logcosh,
                         smooth_loss=generalized_loss,
                         l_inf_norm=l_inf_norm,
                         ssim=DSSIMObjective(),
                         gmsd=gmsd_loss,
                         pixel_gradient_diff=gradient_loss)
        return loss_dict 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:13,代碼來源:_base.py

示例6: mae

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import mean_absolute_error [as 別名]
def mae(self, hr, sr):
        margin = (tf.shape(hr)[1] - tf.shape(sr)[1]) // 2
        hr_crop = tf.cond(tf.equal(margin, 0), lambda: hr, lambda: hr[:, margin:-margin, margin:-margin, :])
        hr = K.in_train_phase(hr_crop, hr)
        hr.uses_learning_phase = True
        return mean_absolute_error(hr, sr) 
開發者ID:wmylxmj,項目名稱:Anime-Super-Resolution,代碼行數:8,代碼來源:train.py

示例7: combined_loss

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import mean_absolute_error [as 別名]
def combined_loss(y_true, y_pred):
    '''
    Uses a combination of mean_squared_error and an L1 penalty on the output of AE
    '''
    return mse(y_true, y_pred) + 0.01*mae(0, y_pred) 
開發者ID:ECP-CANDLE,項目名稱:Benchmarks,代碼行數:7,代碼來源:helper.py

示例8: anomaly_correlation_loss

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import mean_absolute_error [as 別名]
def anomaly_correlation_loss(mean=None, regularize_mean='mse', reverse=True):
    """
    Create a Keras loss function for anomaly correlation.

    :param mean: ndarray or None: if not None, must be an array with the same shape as the expected prediction, except
        that the first (batch) axis should have a dimension of 1.
    :param regularize_mean: str or None: if not None, also penalizes a form of mean squared error:
        global: penalize differences in the global mean
        spatial: penalize differences in spatially-averaged mean (last two dimensions)
        mse: penalize the mean squared error
        mae: penalize the mean absolute error
    :param reverse: bool: if True, inverts the loss so that -1 is the (minimized) target score. Must be True if
        regularize_mean is not None.
    :return: method: anomaly correlation loss function
    """
    if mean is not None:
        assert len(mean.shape) > 1
        assert mean.shape[0] == 1
        mean_tensor = K.variable(mean, name='anomaly_correlation_mean')

    if regularize_mean is not None:
        assert regularize_mean in ['global', 'spatial', 'mse', 'mae']
        reverse = True

    def acc_loss(y_true, y_pred):
        if mean is not None:
            a = (K.mean((y_pred - mean_tensor) * (y_true - mean_tensor))
                 / K.sqrt(K.mean(K.square((y_pred - mean_tensor))) * K.mean(K.square((y_true - mean_tensor)))))
        else:
            a = (K.mean(y_pred * y_true)
                 / K.sqrt(K.mean(K.square(y_pred)) * K.mean(K.square(y_true))))
        if regularize_mean is not None:
            if regularize_mean == 'global':
                m = K.abs((K.mean(y_true) - K.mean(y_pred)) / K.mean(y_true))
            elif regularize_mean == 'spatial':
                m = K.mean(K.abs((K.mean(y_true, axis=[-2, -1]) - K.mean(y_pred, axis=[-2, -1]))
                                 / K.mean(y_true, axis=[-2, -1])))
            elif regularize_mean == 'mse':
                m = mean_squared_error(y_true, y_pred)
            elif regularize_mean == 'mae':
                m = mean_absolute_error(y_true, y_pred)
        if reverse:
            if regularize_mean is not None:
                return m - a
            else:
                return -a
        else:
            if regularize_mean:
                return a - m
            else:
                return a

    return acc_loss


# Compatibility names 
開發者ID:jweyn,項目名稱:DLWP,代碼行數:58,代碼來源:custom.py


注:本文中的keras.losses.mean_absolute_error方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。