當前位置: 首頁>>代碼示例>>Python>>正文


Python losses.binary_crossentropy方法代碼示例

本文整理匯總了Python中keras.losses.binary_crossentropy方法的典型用法代碼示例。如果您正苦於以下問題:Python losses.binary_crossentropy方法的具體用法?Python losses.binary_crossentropy怎麽用?Python losses.binary_crossentropy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.losses的用法示例。


在下文中一共展示了losses.binary_crossentropy方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: breast_cancer

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import binary_crossentropy [as 別名]
def breast_cancer():

    from keras.optimizers import Adam, Nadam, RMSprop
    from keras.losses import logcosh, binary_crossentropy
    from keras.activations import relu, elu, sigmoid

    # then we can go ahead and set the parameter space
    p = {'lr': (0.5, 5, 10),
         'first_neuron': [4, 8, 16, 32, 64],
         'hidden_layers': [0, 1, 2],
         'batch_size': (2, 30, 10),
         'epochs': [50, 100, 150],
         'dropout': (0, 0.5, 5),
         'shapes': ['brick', 'triangle', 'funnel'],
         'optimizer': [Adam, Nadam, RMSprop],
         'losses': [logcosh, binary_crossentropy],
         'activation': [relu, elu],
         'last_activation': [sigmoid]}

    return p 
開發者ID:autonomio,項目名稱:talos,代碼行數:22,代碼來源:params.py

示例2: __init__

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import binary_crossentropy [as 別名]
def __init__(
        self,
        n_hidden_set_units=32,
        learning_rate=1e-3,
        batch_size=256,
        loss_function=binary_crossentropy,
        epochs_drop=300,
        drop=0.1,
        random_state=None,
        **kwargs,
    ):
        self.n_hidden_set_units = n_hidden_set_units
        self.learning_rate = learning_rate
        self.batch_size = batch_size
        self.random_state = random_state
        self.loss_function = loss_function
        self.epochs_drop = epochs_drop
        self.drop = drop
        self.current_lr = None
        self.weight1 = None
        self.bias1 = None
        self.weight2 = None
        self.bias2 = None
        self.optimizer = None 
開發者ID:kiudee,項目名稱:cs-ranking,代碼行數:26,代碼來源:fate_linear.py

示例3: online_bootstrapping

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import binary_crossentropy [as 別名]
def online_bootstrapping(y_true, y_pred, pixels=512, threshold=0.5):
    """ Implements nline Bootstrapping crossentropy loss, to train only on hard pixels,
        see  https://arxiv.org/abs/1605.06885 Bridging Category-level and Instance-level Semantic Image Segmentation
        The implementation is a bit different as we use binary crossentropy instead of softmax
        SUPPORTS ONLY MINIBATCH WITH 1 ELEMENT!
    # Arguments
        y_true: A tensor with labels.

        y_pred: A tensor with predicted probabilites.

        pixels: number of hard pixels to keep

        threshold: confidence to use, i.e. if threshold is 0.7, y_true=1, prediction=0.65 then we consider that pixel as hard
    # Returns
        Mean loss value
    """
    y_true = K.flatten(y_true)
    y_pred = K.flatten(y_pred)
    difference = K.abs(y_true - y_pred)

    values, indices = K.tf.nn.top_k(difference, sorted=True, k=pixels)
    min_difference = (1 - threshold)
    y_true = K.tf.gather(K.gather(y_true, indices), K.tf.where(values > min_difference))
    y_pred = K.tf.gather(K.gather(y_pred, indices), K.tf.where(values > min_difference))

    return K.mean(K.binary_crossentropy(y_true, y_pred)) 
開發者ID:killthekitten,項目名稱:kaggle-carvana-2017,代碼行數:28,代碼來源:losses.py

示例4: bce_border

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import binary_crossentropy [as 別名]
def bce_border(y_true, y_pred):
    border = get_border_mask((21, 21), y_true)

    border = K.flatten(border)
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    y_true_f = K.tf.gather(y_true_f, K.tf.where(border > 0.5))
    y_pred_f = K.tf.gather(y_pred_f, K.tf.where(border > 0.5))

    return binary_crossentropy(y_true_f, y_pred_f) 
開發者ID:killthekitten,項目名稱:kaggle-carvana-2017,代碼行數:12,代碼來源:losses.py

示例5: make_loss

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import binary_crossentropy [as 別名]
def make_loss(loss_name):
    if loss_name == 'crossentropy':
        return K.binary_crossentropy
    elif loss_name == 'crossentropy_boot':
        def loss(y, p):
            return bootstrapped_crossentropy(y, p, 'hard', 0.9)
        return loss
    elif loss_name == 'dice':
        return dice_coef_loss
    elif loss_name == 'bce_dice':
        def loss(y, p):
            return dice_coef_loss_bce(y, p, dice=0.8, bce=0.2, bootstrapping='soft', alpha=1)

        return loss
    elif loss_name == 'boot_soft':
        def loss(y, p):
            return dice_coef_loss_bce(y, p, dice=0.8, bce=0.2, bootstrapping='soft', alpha=0.95)

        return loss
    elif loss_name == 'boot_hard':
        def loss(y, p):
            return dice_coef_loss_bce(y, p, dice=0.8, bce=0.2, bootstrapping='hard', alpha=0.95)

        return loss
    elif loss_name == 'online_bootstrapping':
        def loss(y, p):
            return online_bootstrapping(y, p, pixels=512 * 64, threshold=0.7)

        return loss
    elif loss_name == 'dice_coef_loss_border':
        return dice_coef_loss_border
    elif loss_name == 'bce_dice_loss_border':
        return bce_dice_loss_border
    else:
        ValueError("Unknown loss.") 
開發者ID:killthekitten,項目名稱:kaggle-carvana-2017,代碼行數:37,代碼來源:losses.py

示例6: output_suggested_loss

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import binary_crossentropy [as 別名]
def output_suggested_loss(self):
        self._check_output_support()
        suggested_loss = losses.binary_crossentropy
        return suggested_loss 
開發者ID:bjherger,項目名稱:keras-pandas,代碼行數:6,代碼來源:Boolean.py

示例7: bce_loss_graph

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import binary_crossentropy [as 別名]
def bce_loss_graph(gt, pr):
    return K.mean(binary_crossentropy(gt, pr)) 
開發者ID:nearthlab,項目名稱:image-segmentation,代碼行數:4,代碼來源:semantic_model_wrapper.py

示例8: get_model

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import binary_crossentropy [as 別名]
def get_model():
    nclass = 1
    inp = Input(shape=(187, 1))
    img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid")(inp)
    img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid")(img_1)
    img_1 = MaxPool1D(pool_size=2)(img_1)
    img_1 = Dropout(rate=0.1)(img_1)
    img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
    img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
    img_1 = MaxPool1D(pool_size=2)(img_1)
    img_1 = Dropout(rate=0.1)(img_1)
    img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
    img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
    img_1 = MaxPool1D(pool_size=2)(img_1)
    img_1 = Dropout(rate=0.1)(img_1)
    img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
    img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
    img_1 = GlobalMaxPool1D()(img_1)
    img_1 = Dropout(rate=0.2)(img_1)

    dense_1 = Dense(64, activation=activations.relu, name="dense_1")(img_1)
    dense_1 = Dense(64, activation=activations.relu, name="dense_2")(dense_1)
    dense_1 = Dense(nclass, activation=activations.sigmoid, name="dense_3_ptbdb")(dense_1)

    model = models.Model(inputs=inp, outputs=dense_1)
    opt = optimizers.Adam(0.001)

    model.compile(optimizer=opt, loss=losses.binary_crossentropy, metrics=['acc'])
    model.summary()
    return model 
開發者ID:CVxTz,項目名稱:ECG_Heartbeat_Classification,代碼行數:32,代碼來源:baseline_ptbdb_transfer_fullupdate.py

示例9: get_model

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import binary_crossentropy [as 別名]
def get_model():
    nclass = 1
    inp = Input(shape=(187, 1))
    img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid", trainable=False)(inp)
    img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid", trainable=False)(img_1)
    img_1 = MaxPool1D(pool_size=2)(img_1)
    img_1 = Dropout(rate=0.1)(img_1)
    img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid", trainable=False)(img_1)
    img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid", trainable=False)(img_1)
    img_1 = MaxPool1D(pool_size=2)(img_1)
    img_1 = Dropout(rate=0.1)(img_1)
    img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid", trainable=False)(img_1)
    img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid", trainable=False)(img_1)
    img_1 = MaxPool1D(pool_size=2)(img_1)
    img_1 = Dropout(rate=0.1)(img_1)
    img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid", trainable=False)(img_1)
    img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid", trainable=False)(img_1)
    img_1 = GlobalMaxPool1D()(img_1)
    img_1 = Dropout(rate=0.2)(img_1)

    dense_1 = Dense(64, activation=activations.relu, name="dense_1")(img_1)
    dense_1 = Dense(64, activation=activations.relu, name="dense_2")(dense_1)
    dense_1 = Dense(nclass, activation=activations.sigmoid, name="dense_3_ptbdb")(dense_1)

    model = models.Model(inputs=inp, outputs=dense_1)
    opt = optimizers.Adam(0.001)

    model.compile(optimizer=opt, loss=losses.binary_crossentropy, metrics=['acc'])
    model.summary()
    return model 
開發者ID:CVxTz,項目名稱:ECG_Heartbeat_Classification,代碼行數:32,代碼來源:baseline_ptbdb_transfer_freeze.py

示例10: test_single_pixel_measurement_index

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import binary_crossentropy [as 別名]
def test_single_pixel_measurement_index(self):
        with self.test_session() as sess:

            def test_different_input(sess, test_shape_height, test_shape_width):
                random_x_true = np.random.randint(0, test_shape_width)
                random_y_true = np.random.randint(0, test_shape_height)
                random_x_false = np.random.randint(0, test_shape_width)
                random_y_false = np.random.randint(0, test_shape_height)
                test_true_np = np.array([[1, random_y_true, random_x_true],
                                        [0, random_y_false, random_x_false]],
                                        dtype=np.float32)
                test_pred_np = np.zeros((2, test_shape_height, test_shape_width, 1), dtype=np.float32)
                test_pred_np[0, random_y_true, random_x_true, 0] = 1.0
                test_pred_np[0, random_y_false, random_x_false, 0] = 0.0
                test_pred_tf = tf.convert_to_tensor(test_pred_np, tf.float32)
                test_true_tf = tf.convert_to_tensor(test_true_np, tf.float32)

                measure_tf_true = grasp_loss.segmentation_single_pixel_binary_crossentropy(test_true_tf, test_pred_np)
                measure_tf_true = sess.run(measure_tf_true)

                direct_call_result = binary_crossentropy(test_true_tf[:, :1], tf.constant([[1.0], [0.0]], tf.float32))
                direct_call_result = sess.run(direct_call_result)

                assert np.allclose(measure_tf_true, np.array([0.0], dtype=np.float32), atol=1e-06)
                assert np.allclose(direct_call_result, measure_tf_true)

            test_different_input(sess, 30, 20)
            test_different_input(sess, 40, 50)
            test_different_input(sess, 25, 30)
            test_different_input(sess, 35, 35) 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:32,代碼來源:test_grasp_loss.py

示例11: _makeModel

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import binary_crossentropy [as 別名]
def _makeModel(self, features, arm, gripper, arm_cmd, gripper_cmd, label,
            example, *args, **kwargs):

        img_shape = features.shape[1:]
        arm_size = arm.shape[1]
        if len(gripper.shape) > 1:
            gripper_size = gripper.shape[1]
        else:
            gripper_size = 1


        enc_ins, enc = GetEncoder(img_shape,
                arm_size,
                gripper_size,
                self.generator_dim,
                self.dropout_rate,
                self.img_num_filters,
                pre_tiling_layers=0,
                post_tiling_layers=2,
                discriminator=True)
        dec_ins, dec = GetDecoder(self.generator_dim,
                            img_shape,
                            arm_size,
                            gripper_size,
                            dropout_rate=self.dropout_rate,
                            filters=self.img_num_filters,)

        self.make([dec_ins, enc_ins], [dec, enc], loss="binary_crossentropy")

        self.discriminator.trainable = False
        self.generator.trainable = True
        self.adversarial.summary()
        self.discriminator.summary() 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:35,代碼來源:multi_gan_model.py

示例12: titanic

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import binary_crossentropy [as 別名]
def titanic():

    # here use a standard 2d dictionary for inputting the param boundaries
    p = {'lr': (0.5, 5, 10),
         'first_neuron': [4, 8, 16],
         'batch_size': [20, 30, 40],
         'dropout': (0, 0.5, 5),
         'optimizer': ['Adam', 'Nadam'],
         'losses': ['logcosh', 'binary_crossentropy'],
         'activation': ['relu', 'elu'],
         'last_activation': ['sigmoid']}

    return p 
開發者ID:autonomio,項目名稱:talos,代碼行數:15,代碼來源:params.py

示例13: bce_dice_loss

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import binary_crossentropy [as 別名]
def bce_dice_loss(y_true, y_pred):
    loss = binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred)
    return loss 
開發者ID:petrosgk,項目名稱:Kaggle-Carvana-Image-Masking-Challenge,代碼行數:5,代碼來源:losses.py

示例14: dummy_0_build_fn

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import binary_crossentropy [as 別名]
def dummy_0_build_fn(input_shape=(30,)):
    model = Sequential(
        [
            Dense(50, kernel_initializer="uniform", input_shape=input_shape, activation="relu"),
            Dropout(0.5),
            Dense(1, kernel_initializer="uniform", activation="sigmoid"),
        ]
    )
    model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
    return model 
開發者ID:HunterMcGushion,項目名稱:hyperparameter_hunter,代碼行數:12,代碼來源:test_keras_helper.py

示例15: elasticnet_bincross_loss_on_valid_joints

# 需要導入模塊: from keras import losses [as 別名]
# 或者: from keras.losses import binary_crossentropy [as 別名]
def elasticnet_bincross_loss_on_valid_joints(y_true, y_pred):
    idx = K.cast(K.greater(y_true, 0.), 'float32')
    num_joints = K.clip(K.sum(idx, axis=(-1, -2)), 1, None)

    l1 = K.abs(y_pred - y_true)
    l2 = K.square(y_pred - y_true)
    bc = 0.01*K.binary_crossentropy(y_true, y_pred)
    dummy = 0. * y_pred

    return K.sum(tf.where(K.cast(idx, 'bool'), l1 + l2 + bc, dummy),
            axis=(-1, -2)) / num_joints 
開發者ID:dluvizon,項目名稱:deephar,代碼行數:13,代碼來源:losses.py


注:本文中的keras.losses.binary_crossentropy方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。