當前位置: 首頁>>代碼示例>>Python>>正文


Python pooling.GlobalAveragePooling2D方法代碼示例

本文整理匯總了Python中keras.layers.pooling.GlobalAveragePooling2D方法的典型用法代碼示例。如果您正苦於以下問題:Python pooling.GlobalAveragePooling2D方法的具體用法?Python pooling.GlobalAveragePooling2D怎麽用?Python pooling.GlobalAveragePooling2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers.pooling的用法示例。


在下文中一共展示了pooling.GlobalAveragePooling2D方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: resnet_model

# 需要導入模塊: from keras.layers import pooling [as 別名]
# 或者: from keras.layers.pooling import GlobalAveragePooling2D [as 別名]
def resnet_model(nb_blocks, bottleneck=True, l2_reg=1e-4):
    nb_channels = [16, 32, 64]
    inputs = Input((32, 32, 3))
    x = Convolution2D(16, 3, 3, border_mode='same', init='he_normal',
                      W_regularizer=l2(l2_reg), bias=False)(inputs)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    for n, f in zip(nb_channels, [True, False, False]):
        x = block_stack(x, n, nb_blocks, bottleneck=bottleneck, l2_reg=l2_reg,
                        first=f)
    # Last BN-Relu
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = GlobalAveragePooling2D()(x)
    x = Dense(10)(x)
    x = Activation('softmax')(x)

    model = Model(input=inputs, output=x)
    return model 
開發者ID:robertomest,項目名稱:convnet-study,代碼行數:21,代碼來源:resnet.py

示例2: densenet_model

# 需要導入模塊: from keras.layers import pooling [as 別名]
# 或者: from keras.layers.pooling import GlobalAveragePooling2D [as 別名]
def densenet_model(nb_blocks, nb_layers, growth_rate, dropout=0., l2_reg=1e-4,
                   init_channels=16):
    n_channels = init_channels
    inputs = Input(shape=(32, 32, 3))
    x = Convolution2D(init_channels, 3, 3, border_mode='same',
                      init='he_normal', W_regularizer=l2(l2_reg),
                      bias=False)(inputs)
    for i in range(nb_blocks - 1):
        # Create a dense block
        x = dense_block(x, nb_layers, growth_rate,
                        dropout=dropout, l2_reg=l2_reg)
        # Update the number of channels
        n_channels += nb_layers*growth_rate
        # Transition layer
        x = transition_block(x, n_channels, dropout=dropout, l2_reg=l2_reg)

    # Add last dense_block
    x = dense_block(x, nb_layers, growth_rate, dropout=dropout, l2_reg=l2_reg)
    # Add final BN-Relu
    x = BatchNormalization(gamma_regularizer=l2(l2_reg),
                             beta_regularizer=l2(l2_reg))(x)
    x = Activation('relu')(x)
    # Global average pooling
    x = GlobalAveragePooling2D()(x)
    x = Dense(10, W_regularizer=l2(l2_reg))(x)
    x = Activation('softmax')(x)

    model = Model(input=inputs, output=x)
    return model

# Apply preprocessing as described in the paper: normalize each channel
# individually. We use the values from fb.resnet.torch, but computing the values
# gets a very close answer. 
開發者ID:robertomest,項目名稱:convnet-study,代碼行數:35,代碼來源:densenet.py

示例3: test_globalpooling_2d

# 需要導入模塊: from keras.layers import pooling [as 別名]
# 或者: from keras.layers.pooling import GlobalAveragePooling2D [as 別名]
def test_globalpooling_2d():
    layer_test(pooling.GlobalMaxPooling2D,
               kwargs={'data_format': 'channels_first'},
               input_shape=(3, 4, 5, 6))
    layer_test(pooling.GlobalMaxPooling2D,
               kwargs={'data_format': 'channels_last'},
               input_shape=(3, 5, 6, 4))
    layer_test(pooling.GlobalAveragePooling2D,
               kwargs={'data_format': 'channels_first'},
               input_shape=(3, 4, 5, 6))
    layer_test(pooling.GlobalAveragePooling2D,
               kwargs={'data_format': 'channels_last'},
               input_shape=(3, 5, 6, 4)) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:15,代碼來源:convolutional_test.py

示例4: create_model

# 需要導入模塊: from keras.layers import pooling [as 別名]
# 或者: from keras.layers.pooling import GlobalAveragePooling2D [as 別名]
def create_model(input_shape, config):

    input_tensor = Input(shape=input_shape)  # this assumes K.image_dim_ordering() == 'tf'
    resnet_model = ResNet50(include_top=False, weights=None, input_tensor=input_tensor)
    print(resnet_model.summary())

    x = resnet_model.output
    x = GlobalAveragePooling2D()(x)
    predictions = Dense(config["num_classes"], activation='softmax')(x)

    return Model(input=resnet_model.input, output=predictions) 
開發者ID:HPI-DeepLearning,項目名稱:crnn-lid,代碼行數:13,代碼來源:resnet.py

示例5: create_model

# 需要導入模塊: from keras.layers import pooling [as 別名]
# 或者: from keras.layers.pooling import GlobalAveragePooling2D [as 別名]
def create_model(input_shape, config):

    input_tensor = Input(shape=input_shape)  # this assumes K.image_dim_ordering() == 'tf'
    xception_model = Xception(include_top=False, weights=None, input_tensor=input_tensor)
    print(xception_model.summary())

    x = xception_model.output
    x = GlobalAveragePooling2D()(x)
    predictions = Dense(config["num_classes"], activation='softmax')(x)

    return Model(input=xception_model.input, output=predictions) 
開發者ID:HPI-DeepLearning,項目名稱:crnn-lid,代碼行數:13,代碼來源:xception.py

示例6: create_model

# 需要導入模塊: from keras.layers import pooling [as 別名]
# 或者: from keras.layers.pooling import GlobalAveragePooling2D [as 別名]
def create_model(input_shape, config):

    input_tensor = Input(shape=input_shape)  # this assumes K.image_dim_ordering() == 'tf'
    inception_model = InceptionV3(include_top=False, weights=None, input_tensor=input_tensor)
    print(inception_model.summary())

    x = inception_model.output
    x = GlobalAveragePooling2D()(x)
    predictions = Dense(config["num_classes"], activation='softmax')(x)

    return Model(input=inception_model.input, output=predictions) 
開發者ID:HPI-DeepLearning,項目名稱:crnn-lid,代碼行數:13,代碼來源:inceptionv3.py

示例7: create_dense_net

# 需要導入模塊: from keras.layers import pooling [as 別名]
# 或者: from keras.layers.pooling import GlobalAveragePooling2D [as 別名]
def create_dense_net(nb_classes, img_dim, depth=40, nb_dense_block=3, growth_rate=12, nb_filter=16, dropout_rate=None,
                     weight_decay=1E-4, verbose=True):
    ''' Build the create_dense_net model

    Args:
        nb_classes: number of classes
        img_dim: tuple of shape (channels, rows, columns) or (rows, columns, channels)
        depth: number or layers
        nb_dense_block: number of dense blocks to add to end
        growth_rate: number of filters to add
        nb_filter: number of filters
        dropout_rate: dropout rate
        weight_decay: weight decay

    Returns: keras tensor with nb_layers of conv_block appended

    '''

    model_input = Input(shape=img_dim)

    concat_axis = 1 if K.image_dim_ordering() == "th" else -1

    assert (depth - 4) % 3 == 0, "Depth must be 3 N + 4"

    # layers in each dense block
    nb_layers = int((depth - 4) / 3)

    # Initial convolution
    x = Convolution2D(nb_filter, 3, 3, init="he_uniform", border_mode="same", name="initial_conv2D", bias=False,
                      W_regularizer=l2(weight_decay))(model_input)

    x = BatchNormalization(mode=0, axis=concat_axis, gamma_regularizer=l2(weight_decay),
                            beta_regularizer=l2(weight_decay))(x)

    # Add dense blocks
    for block_idx in range(nb_dense_block - 1):
        x, nb_filter = dense_block(x, nb_layers, nb_filter, growth_rate, dropout_rate=dropout_rate,
                                   weight_decay=weight_decay)
        # add transition_block
        x = transition_block(x, nb_filter, dropout_rate=dropout_rate, weight_decay=weight_decay)

    # The last dense_block does not have a transition_block
    x, nb_filter = dense_block(x, nb_layers, nb_filter, growth_rate, dropout_rate=dropout_rate,
                               weight_decay=weight_decay)

    x = Activation('relu')(x)
    x = GlobalAveragePooling2D()(x)
    x = Dense(nb_classes, activation='softmax', W_regularizer=l2(weight_decay), b_regularizer=l2(weight_decay))(x)

    densenet = Model(input=model_input, output=x, name="create_dense_net")

    if verbose: print("DenseNet-%d-%d created." % (depth, growth_rate))

    return densenet 
開發者ID:cvjena,項目名稱:semantic-embeddings,代碼行數:56,代碼來源:densenet_fast.py

示例8: createDenseNet

# 需要導入模塊: from keras.layers import pooling [as 別名]
# 或者: from keras.layers.pooling import GlobalAveragePooling2D [as 別名]
def createDenseNet(nb_classes, img_dim, depth=40, nb_dense_block=3, growth_rate=12, nb_filter=16, dropout_rate=None,
                     weight_decay=1E-4, verbose=True):
    ''' Build the create_dense_net model
    Args:
        nb_classes: number of classes
        img_dim: tuple of shape (channels, rows, columns) or (rows, columns, channels)
        depth: number or layers
        nb_dense_block: number of dense blocks to add to end
        growth_rate: number of filters to add
        nb_filter: number of filters
        dropout_rate: dropout rate
        weight_decay: weight decay
    Returns: keras tensor with nb_layers of conv_block appended
    '''

    model_input = Input(shape=img_dim)

    concat_axis = 1 if K.image_dim_ordering() == "th" else -1

    assert (depth - 4) % 3 == 0, "Depth must be 3 N + 4"

    # layers in each dense block
    nb_layers = int((depth - 4) / 3)

    # Initial convolution
    x = Convolution2D(nb_filter, (3, 3), kernel_initializer="he_uniform", padding="same", name="initial_conv2D", use_bias=False,
                      kernel_regularizer=l2(weight_decay))(model_input)

    x = BatchNormalization(axis=concat_axis, gamma_regularizer=l2(weight_decay),
                            beta_regularizer=l2(weight_decay))(x)

    # Add dense blocks
    for block_idx in range(nb_dense_block - 1):
        x, nb_filter = dense_block(x, nb_layers, nb_filter, growth_rate, dropout_rate=dropout_rate,
                                   weight_decay=weight_decay)
        # add transition_block
        x = transition_block(x, nb_filter, dropout_rate=dropout_rate, weight_decay=weight_decay)

    # The last dense_block does not have a transition_block
    x, nb_filter = dense_block(x, nb_layers, nb_filter, growth_rate, dropout_rate=dropout_rate,
                               weight_decay=weight_decay)

    x = Activation('relu')(x)
    x = GlobalAveragePooling2D()(x)
    x = Dense(nb_classes, activation='softmax', kernel_regularizer=l2(weight_decay), bias_regularizer=l2(weight_decay))(x)

    densenet = Model(inputs=model_input, outputs=x)

    if verbose: 
        print("DenseNet-%d-%d created." % (depth, growth_rate))

    return densenet 
開發者ID:Kexiii,項目名稱:DenseNet-Cifar10,代碼行數:54,代碼來源:DenseNet.py

示例9: __create_wide_residual_network

# 需要導入模塊: from keras.layers import pooling [as 別名]
# 或者: from keras.layers.pooling import GlobalAveragePooling2D [as 別名]
def __create_wide_residual_network(nb_classes, img_input, include_top, depth=28,
                                   width=8, dropout=0.0, activation='softmax'):
    ''' Creates a Wide Residual Network with specified parameters

    Args:
        nb_classes: Number of output classes
        img_input: Input tensor or layer
        include_top: Flag to include the last dense layer
        depth: Depth of the network. Compute N = (n - 4) / 6.
               For a depth of 16, n = 16, N = (16 - 4) / 6 = 2
               For a depth of 28, n = 28, N = (28 - 4) / 6 = 4
               For a depth of 40, n = 40, N = (40 - 4) / 6 = 6
        width: Width of the network.
        dropout: Adds dropout if value is greater than 0.0

    Returns:a Keras Model
    '''

    N = (depth - 4) // 6

    x = __conv1_block(img_input)
    nb_conv = 4

    for i in range(N):
        x = __conv2_block(x, width, dropout)
        nb_conv += 2

    x = MaxPooling2D((2, 2))(x)

    for i in range(N):
        x = __conv3_block(x, width, dropout)
        nb_conv += 2

    x = MaxPooling2D((2, 2))(x)

    for i in range(N):
        x = ___conv4_block(x, width, dropout)
        nb_conv += 2

    if include_top:
        x = GlobalAveragePooling2D()(x)
        x = Dense(nb_classes, activation=activation)(x)

    return x 
開發者ID:keras-team,項目名稱:keras-contrib,代碼行數:46,代碼來源:wide_resnet.py

示例10: raw_vgg

# 需要導入模塊: from keras.layers import pooling [as 別名]
# 或者: from keras.layers.pooling import GlobalAveragePooling2D [as 別名]
def raw_vgg(args, input_length=12000 * 29, tf='melgram', normalize=None,
            decibel=False, last_layer=True, sr=None):
    ''' when length = 12000*29 and 512/256 dft/hop, 
    melgram size: (n_mels, 1360)
    '''
    assert tf in ('stft', 'melgram')
    assert normalize in (None, False, 'no', 0, 0.0, 'batch', 'data_sample', 'time', 'freq', 'channel')
    assert isinstance(decibel, bool)

    if sr is None:
        sr = SR  # assumes 12000

    conv_until = args.conv_until
    trainable_kernel = args.trainable_kernel
    model = Sequential()
    # decode args
    fmin = args.fmin
    fmax = args.fmax
    if fmax == 0.0:
        fmax = sr / 2
    n_mels = args.n_mels
    trainable_fb = args.trainable_fb
    model.add(Melspectrogram(n_dft=512, n_hop=256, power_melgram=2.0,
                             input_shape=(1, input_length),
                             trainable_kernel=trainable_kernel,
                             trainable_fb=trainable_fb,
                             return_decibel_melgram=decibel,
                             sr=sr, n_mels=n_mels,
                             fmin=fmin, fmax=fmax,
                             name='melgram'))

    poolings = [(2, 4), (3, 4), (2, 5), (2, 4), (4, 4)]

    if normalize in ('batch', 'data_sample', 'time', 'freq', 'channel'):
        model.add(Normalization2D(normalize))
    model.add(get_convBNeluMPdrop(5, [32, 32, 32, 32, 32],
                                  [(3, 3), (3, 3), (3, 3), (3, 3), (3, 3)],
                                  poolings, model.output_shape[1:], conv_until=conv_until))
    if conv_until != 4:
        model.add(GlobalAveragePooling2D())
    else:
        model.add(Flatten())

    if last_layer:
        model.add(Dense(50, activation='sigmoid'))
    return model 
開發者ID:keunwoochoi,項目名稱:music-auto_tagging-keras,代碼行數:48,代碼來源:models.py

示例11: DenseNet

# 需要導入模塊: from keras.layers import pooling [as 別名]
# 或者: from keras.layers.pooling import GlobalAveragePooling2D [as 別名]
def DenseNet(nb_classes, img_dim, depth, nb_dense_block, growth_rate,
             nb_filter, dropout_rate=None, weight_decay=1E-4):
    """ Build the DenseNet model
    :param nb_classes: int -- number of classes
    :param img_dim: tuple -- (channels, rows, columns)
    :param depth: int -- how many layers
    :param nb_dense_block: int -- number of dense blocks to add to end
    :param growth_rate: int -- number of filters to add
    :param nb_filter: int -- number of filters
    :param dropout_rate: float -- dropout rate
    :param weight_decay: float -- weight decay
    :returns: keras model with nb_layers of conv_factory appended
    :rtype: keras model
    """

    model_input = Input(shape=img_dim)

    assert (depth - 4) % 3 == 0, "Depth must be 3 N + 4"

    # layers in each dense block
    nb_layers = int((depth - 4) / 3)

    # Initial convolution
    x = Convolution2D(nb_filter, 3, 3,
                      init="he_uniform",
                      border_mode="same",
                      name="initial_conv2D",
                      bias=False,
                      W_regularizer=l2(weight_decay))(model_input)

    # Add dense blocks
    for block_idx in range(nb_dense_block - 1):
        x, nb_filter = denseblock(x, nb_layers, nb_filter, growth_rate,
                                  dropout_rate=dropout_rate,
                                  weight_decay=weight_decay)
        # add transition
        x = transition(x, nb_filter, dropout_rate=dropout_rate,
                       weight_decay=weight_decay)

    # The last denseblock does not have a transition
    x, nb_filter = denseblock(x, nb_layers, nb_filter, growth_rate,
                              dropout_rate=dropout_rate,
                              weight_decay=weight_decay)


    x = Activation('relu')(x)
    x = GlobalAveragePooling2D(dim_ordering="th")(x)
    x = Dense(nb_classes,
              activation='softmax',
              W_regularizer=l2(weight_decay),
              b_regularizer=l2(weight_decay))(x)

    densenet = Model(input=[model_input], output=[x], name="DenseNet")

    return densenet 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:57,代碼來源:Densenet.py

示例12: _makeImageDiscriminator

# 需要導入模塊: from keras.layers import pooling [as 別名]
# 或者: from keras.layers.pooling import GlobalAveragePooling2D [as 別名]
def _makeImageDiscriminator(self, img_shape):
        '''
        create image-only encoder to extract keypoints from the scene.

        Params:
        -------
        img_shape: shape of the image to encode
        '''
        img = Input(img_shape,name="img_encoder_in")
        img0 = Input(img_shape,name="img0_encoder_in")
        ins = [img, img0]
        dr = self.dropout_rate

        if self.use_wasserstein:
            loss = wasserstein_loss
            activation = "linear"
        else:
            loss = "binary_crossentropy"
            activation = "sigmoid"

        # common arguments
        kwargs = { "dropout_rate" : dr,
                   "padding" : "same",
                   "lrelu" : True,
                   "bn" : False,
                   "perm_drop" : True,
                 }

        x  = AddConv2D(img,  64, [4,4], 1, **kwargs)
        x0 = AddConv2D(img0, 64, [4,4], 1, **kwargs)
        x  = Add()([x, x0])
        x  = AddConv2D(x,    64, [4,4], 2, **kwargs)
        x  = AddConv2D(x,   128, [4,4], 2, **kwargs)
        x  = AddConv2D(x,   256, [4,4], 2, **kwargs)

        if self.use_wasserstein:
            x = Flatten()(x)
            x = AddDense(x, 1, "linear", 0., output=True, bn=False, perm_drop=True)
        else:
            x = AddConv2D(x, 1, [1,1], 1, 0., "same", activation="sigmoid",
                bn=False, perm_drop=True)
            x = GlobalAveragePooling2D()(x)

        discrim = Model(ins, x, name="image_discriminator")
        self.lr *= 2.
        discrim.compile(loss=loss, loss_weights=[1.],
                optimizer=self.getOptimizer())
        self.lr *= 0.5
        self.image_discriminator = discrim
        return discrim 
開發者ID:jhu-lcsr,項目名稱:costar_plan,代碼行數:52,代碼來源:pretrain_image_gan.py

示例13: discriminator

# 需要導入模塊: from keras.layers import pooling [as 別名]
# 或者: from keras.layers.pooling import GlobalAveragePooling2D [as 別名]
def discriminator(img_dim, bn_mode, model_name="discriminator"):
    """DCGAN discriminator

    Args:
        img_dim: dimension of the image output
        bn_mode: keras batchnorm mode
        model_name: model name (default: {"generator_deconv"})

    Returns:
        keras model
    """

    if K.image_dim_ordering() == "th":
        bn_axis = 1
        min_s = min(img_dim[1:])
    else:
        bn_axis = -1
        min_s = min(img_dim[:-1])

    disc_input = Input(shape=img_dim, name="discriminator_input")

    # Get the list of number of conv filters
    # (first layer starts with 64), filters are subsequently doubled
    nb_conv = int(np.floor(np.log(min_s // 4) / np.log(2)))
    list_f = [64 * min(8, (2 ** i)) for i in range(nb_conv)]

    # First conv with 2x2 strides
    x = Conv2D(list_f[0], (3, 3), strides=(2, 2), name="disc_conv2d_1",
               padding="same", use_bias=False,
               kernel_initializer=RandomNormal(stddev=0.02))(disc_input)
    x = BatchNormalization(axis=bn_axis)(x)
    x = LeakyReLU(0.2)(x)

    # Conv blocks: Conv2D(2x2 strides)->BN->LReLU
    for i, f in enumerate(list_f[1:]):
        name = "disc_conv2d_%s" % (i + 2)
        x = Conv2D(f, (3, 3), strides=(2, 2), name=name, padding="same", use_bias=False,
                   kernel_initializer=RandomNormal(stddev=0.02))(x)
        x = BatchNormalization(axis=bn_axis)(x)
        x = LeakyReLU(0.2)(x)

    # Last convolution
    x = Conv2D(1, (3, 3), name="last_conv", padding="same", use_bias=False,
               kernel_initializer=RandomNormal(stddev=0.02))(x)
    # Average pooling
    x = GlobalAveragePooling2D()(x)

    discriminator_model = Model(inputs=[disc_input], outputs=[x], name=model_name)
    visualize_model(discriminator_model)

    return discriminator_model 
開發者ID:tdeboissiere,項目名稱:DeepLearningImplementations,代碼行數:53,代碼來源:models_WGAN.py


注:本文中的keras.layers.pooling.GlobalAveragePooling2D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。