當前位置: 首頁>>代碼示例>>Python>>正文


Python normalization.BatchNormalization方法代碼示例

本文整理匯總了Python中keras.layers.normalization.BatchNormalization方法的典型用法代碼示例。如果您正苦於以下問題:Python normalization.BatchNormalization方法的具體用法?Python normalization.BatchNormalization怎麽用?Python normalization.BatchNormalization使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers.normalization的用法示例。


在下文中一共展示了normalization.BatchNormalization方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_residual_model

# 需要導入模塊: from keras.layers import normalization [as 別名]
# 或者: from keras.layers.normalization import BatchNormalization [as 別名]
def get_residual_model(is_mnist=True, img_channels=1, img_rows=28, img_cols=28):
    model = keras.models.Sequential()
    first_layer_channel = 128
    if is_mnist: # size to be changed to 32,32
        model.add(ZeroPadding2D((2,2), input_shape=(img_channels, img_rows, img_cols))) # resize (28,28)-->(32,32)
        # the first conv 
        model.add(Convolution2D(first_layer_channel, 3, 3, border_mode='same'))
    else:
        model.add(Convolution2D(first_layer_channel, 3, 3, border_mode='same', input_shape=(img_channels, img_rows, img_cols)))

    model.add(Activation('relu'))
    # [residual-based Conv layers]
    residual_blocks = design_for_residual_blocks(num_channel_input=first_layer_channel)
    model.add(residual_blocks)
    model.add(BatchNormalization(axis=1))
    model.add(Activation('relu'))
    # [Classifier]    
    model.add(Flatten())
    model.add(Dense(nb_classes))
    model.add(Activation('softmax'))
    # [END]
    return model 
開發者ID:keunwoochoi,項目名稱:residual_block_keras,代碼行數:24,代碼來源:example.py

示例2: ann_model

# 需要導入模塊: from keras.layers import normalization [as 別名]
# 或者: from keras.layers.normalization import BatchNormalization [as 別名]
def ann_model(input_shape):

    inp = Input(shape=input_shape, name='mfcc_in')
    model = inp

    model = Conv1D(filters=12, kernel_size=(3), activation='relu')(model)
    model = Conv1D(filters=12, kernel_size=(3), activation='relu')(model)
    model = Flatten()(model)

    model = Dense(56)(model)
    model = Activation('relu')(model)
    model = BatchNormalization()(model)
    model = Dropout(0.2)(model)
    model = Dense(28)(model)
    model = Activation('relu')(model)
    model = BatchNormalization()(model)

    model = Dense(1)(model)
    model = Activation('sigmoid')(model)

    model = Model(inp, model)
    return model 
開發者ID:tympanix,項目名稱:subsync,代碼行數:24,代碼來源:train_ann.py

示例3: DCGAN_discriminator

# 需要導入模塊: from keras.layers import normalization [as 別名]
# 或者: from keras.layers.normalization import BatchNormalization [as 別名]
def DCGAN_discriminator():
    nb_filters = 64
    nb_conv = int(np.floor(np.log(128) / np.log(2)))
    list_filters = [nb_filters * min(8, (2 ** i)) for i in range(nb_conv)]

    input_img = Input(shape=(128, 128, 3))
    x = Conv2D(list_filters[0], (3, 3), strides=(2, 2), name="disc_conv2d_1", padding="same")(input_img)
    x = BatchNormalization(axis=-1)(x)
    x = LeakyReLU(0.2)(x)
    # Next convs
    for i, f in enumerate(list_filters[1:]):
        name = "disc_conv2d_%s" % (i + 2)
        x = Conv2D(f, (3, 3), strides=(2, 2), name=name, padding="same")(x)
        x = BatchNormalization(axis=-1)(x)
        x = LeakyReLU(0.2)(x)

    x_flat = Flatten()(x)
    x_out = Dense(1, activation="sigmoid", name="disc_dense")(x_flat)
    discriminator_model = Model(inputs=input_img, outputs=[x_out])
    return discriminator_model 
開發者ID:kirumang,項目名稱:Pix2Pose,代碼行數:22,代碼來源:ae_model.py

示例4: test_weight_init

# 需要導入模塊: from keras.layers import normalization [as 別名]
# 或者: from keras.layers.normalization import BatchNormalization [as 別名]
def test_weight_init(self):
        """
        Test weight initialization
        """

        norm_m1 = normalization.BatchNormalization((10,), mode=1, weights=[np.ones(10),np.ones(10)])

        for inp in [self.input_1, self.input_2, self.input_3]:
            norm_m1.input = inp
            out = (norm_m1.get_output(train=True) - np.ones(10))/1.
            self.assertAlmostEqual(out.mean().eval(), 0.0)
            if inp.std() > 0.:
                self.assertAlmostEqual(out.std().eval(), 1.0, places=2)
            else:
                self.assertAlmostEqual(out.std().eval(), 0.0, places=2)

        assert_allclose(norm_m1.gamma.eval(),np.ones(10))
        assert_allclose(norm_m1.beta.eval(),np.ones(10))

        #Weights must be an iterable of gamma AND beta.
        self.assertRaises(Exception,normalization.BatchNormalization(10,), weights = np.ones(10)) 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:23,代碼來源:test_normalization.py

示例5: conv_block

# 需要導入模塊: from keras.layers import normalization [as 別名]
# 或者: from keras.layers.normalization import BatchNormalization [as 別名]
def conv_block(input_tensor, filters, strides, d_rates):
    x = Conv2D(filters[0], kernel_size=1, dilation_rate=d_rates[0])(input_tensor)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)

    x = Conv2D(filters[1], kernel_size=3, strides=strides, padding='same', dilation_rate=d_rates[1])(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)

    x = Conv2D(filters[2], kernel_size=1, dilation_rate=d_rates[2])(x)
    x = BatchNormalization()(x)

    shortcut = Conv2D(filters[2], kernel_size=1, strides=strides)(input_tensor)
    shortcut = BatchNormalization()(shortcut)

    x = add([x, shortcut])
    x = Activation('relu')(x)

    return x 
開發者ID:dhkim0225,項目名稱:keras-image-segmentation,代碼行數:21,代碼來源:psp_temp.py

示例6: identity_block

# 需要導入模塊: from keras.layers import normalization [as 別名]
# 或者: from keras.layers.normalization import BatchNormalization [as 別名]
def identity_block(input_tensor, filters, d_rates):
    x = Conv2D(filters[0], kernel_size=1, dilation_rate=d_rates[0])(input_tensor)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)

    x = Conv2D(filters[1], kernel_size=3, padding='same', dilation_rate=d_rates[1])(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)

    x = Conv2D(filters[2], kernel_size=1, dilation_rate=d_rates[2])(x)
    x = BatchNormalization()(x)

    x = add([x, input_tensor])
    x = Activation('relu')(x)

    return x 
開發者ID:dhkim0225,項目名稱:keras-image-segmentation,代碼行數:18,代碼來源:psp_temp.py

示例7: __transition_block

# 需要導入模塊: from keras.layers import normalization [as 別名]
# 或者: from keras.layers.normalization import BatchNormalization [as 別名]
def __transition_block(ip, nb_filter, compression=1.0, weight_decay=1e-4):
    ''' Apply BatchNorm, Relu 1x1, Conv2D, optional compression, dropout and Maxpooling2D
    Args:
        ip: keras tensor
        nb_filter: number of filters
        compression: calculated as 1 - reduction. Reduces the number of feature maps
                    in the transition block.
        dropout_rate: dropout rate
        weight_decay: weight decay factor
    Returns: keras tensor, after applying batch_norm, relu-conv, dropout, maxpool
    '''
    concat_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip)
    x = Activation('relu')(x)
    x = Conv2D(int(nb_filter * compression), (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
               kernel_regularizer=l2(weight_decay))(x)
    x = AveragePooling2D((2, 2), strides=(2, 2))(x)

    # global context block
    x = global_context_block(x)

    return x 
開發者ID:titu1994,項目名稱:keras-global-context-networks,代碼行數:25,代碼來源:gc_densenet.py

示例8: conv_factory

# 需要導入模塊: from keras.layers import normalization [as 別名]
# 或者: from keras.layers.normalization import BatchNormalization [as 別名]
def conv_factory(x, concat_axis, nb_filter,
                 dropout_rate=None, weight_decay=1E-4):
    x = BatchNormalization(axis=concat_axis,
                           gamma_regularizer=l2(weight_decay),
                           beta_regularizer=l2(weight_decay))(x)
    x = Activation('relu')(x)
    x = Conv2D(nb_filter, (5, 5), dilation_rate=(2, 2),
               kernel_initializer="he_uniform",
               padding="same",
               kernel_regularizer=l2(weight_decay))(x)
    if dropout_rate:
        x = Dropout(dropout_rate)(x)

    return x


# define dense block 
開發者ID:bu-cisl,項目名稱:Deep-Speckle-Correlation,代碼行數:19,代碼來源:model.py

示例9: build_model

# 需要導入模塊: from keras.layers import normalization [as 別名]
# 或者: from keras.layers.normalization import BatchNormalization [as 別名]
def build_model():
    """
    定義模型
    """
    model = Sequential()

    model.add(LSTM(units=Conf.LAYERS[1], input_shape=(Conf.LAYERS[1], Conf.LAYERS[0]), return_sequences=True))
    model.add(Dropout(0.2))

    model.add(LSTM(Conf.LAYERS[2], return_sequences=False))
    model.add(Dropout(0.2))

    model.add(Dense(units=Conf.LAYERS[3]))
    # model.add(BatchNormalization(weights=None, epsilon=1e-06, momentum=0.9))
    model.add(Activation("tanh"))
    # act = PReLU(alpha_initializer='zeros', weights=None)
    # act = LeakyReLU(alpha=0.3)
    # model.add(act)

    start = time.time()
    model.compile(loss="mse", optimizer="rmsprop")
    print("> Compilation Time : ", time.time() - start)
    return model 
開發者ID:liyinwei,項目名稱:copper_price_forecast,代碼行數:25,代碼來源:co_lstm_predict_day.py

示例10: generator

# 需要導入模塊: from keras.layers import normalization [as 別名]
# 或者: from keras.layers.normalization import BatchNormalization [as 別名]
def generator(input_dim,alpha=0.2):
    model = Sequential()
    model.add(Dense(input_dim=input_dim, output_dim=4*4*512))
    model.add(Reshape(target_shape=(4,4,512)))
    model.add(BatchNormalization())
    model.add(LeakyReLU(alpha))
    model.add(Conv2DTranspose(256, kernel_size=5, strides=2, padding='same'))
    model.add(BatchNormalization())
    model.add(LeakyReLU(alpha))
    model.add(Conv2DTranspose(128, kernel_size=5, strides=2, padding='same'))   
    model.add(BatchNormalization())
    model.add(LeakyReLU(alpha))
    model.add(Conv2DTranspose(3, kernel_size=5, strides=2, padding='same'))   
    model.add(Activation('tanh'))
    return model

#Define the Discriminator Network 
開發者ID:PacktPublishing,項目名稱:Intelligent-Projects-Using-Python,代碼行數:19,代碼來源:captcha_gan.py

示例11: discriminator

# 需要導入模塊: from keras.layers import normalization [as 別名]
# 或者: from keras.layers.normalization import BatchNormalization [as 別名]
def discriminator(img_dim,alpha=0.2):
    model = Sequential()
    model.add(
            Conv2D(64, kernel_size=5,strides=2,
            padding='same',
            input_shape=img_dim)
            )
    model.add(LeakyReLU(alpha))
    model.add(Conv2D(128,kernel_size=5,strides=2,padding='same'))
    model.add(BatchNormalization())
    model.add(LeakyReLU(alpha))
    model.add(Conv2D(256,kernel_size=5,strides=2,padding='same'))
    model.add(BatchNormalization())
    model.add(LeakyReLU(alpha))
    model.add(Flatten())
    model.add(Dense(1))
    model.add(Activation('sigmoid'))
    return model

# Define a combination of Generator and Discriminator 
開發者ID:PacktPublishing,項目名稱:Intelligent-Projects-Using-Python,代碼行數:22,代碼來源:captcha_gan.py

示例12: __transition_block

# 需要導入模塊: from keras.layers import normalization [as 別名]
# 或者: from keras.layers.normalization import BatchNormalization [as 別名]
def __transition_block(ip, nb_filter, compression=1.0, weight_decay=1e-4):
    ''' Apply BatchNorm, Relu 1x1, Conv2D, optional compression, dropout and Maxpooling2D
    Args:
        ip: keras tensor
        nb_filter: number of filters
        compression: calculated as 1 - reduction. Reduces the number of feature maps
                    in the transition block.
        dropout_rate: dropout rate
        weight_decay: weight decay factor
    Returns: keras tensor, after applying batch_norm, relu-conv, dropout, maxpool
    '''
    concat_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip)
    x = Activation('relu')(x)
    x = Conv2D(int(nb_filter * compression), (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
               kernel_regularizer=l2(weight_decay))(x)
    x = AveragePooling2D((2, 2), strides=(2, 2))(x)

    return x 
開發者ID:OlafenwaMoses,項目名稱:Model-Playgrounds,代碼行數:22,代碼來源:densenet.py

示例13: _build_image_embedding

# 需要導入模塊: from keras.layers import normalization [as 別名]
# 或者: from keras.layers.normalization import BatchNormalization [as 別名]
def _build_image_embedding(self):
        image_model = InceptionV3(include_top=False, weights='imagenet',
                                  pooling='avg')
        for layer in image_model.layers:
            layer.trainable = False

        dense_input = BatchNormalization(axis=-1)(image_model.output)
        image_dense = Dense(units=self._embedding_size,
                            kernel_regularizer=self._regularizer,
                            kernel_initializer=self._initializer
                            )(dense_input)
        # Add timestep dimension
        image_embedding = RepeatVector(1)(image_dense)

        image_input = image_model.input
        return image_input, image_embedding 
開發者ID:danieljl,項目名稱:keras-image-captioning,代碼行數:18,代碼來源:models.py

示例14: _build_sequence_model

# 需要導入模塊: from keras.layers import normalization [as 別名]
# 或者: from keras.layers.normalization import BatchNormalization [as 別名]
def _build_sequence_model(self, sequence_input):
        RNN = GRU if self._rnn_type == 'gru' else LSTM

        def rnn():
            rnn = RNN(units=self._rnn_output_size,
                      return_sequences=True,
                      dropout=self._dropout_rate,
                      recurrent_dropout=self._dropout_rate,
                      kernel_regularizer=self._regularizer,
                      kernel_initializer=self._initializer,
                      implementation=2)
            rnn = Bidirectional(rnn) if self._bidirectional_rnn else rnn
            return rnn

        input_ = sequence_input
        for _ in range(self._rnn_layers):
            input_ = BatchNormalization(axis=-1)(input_)
            rnn_out = rnn()(input_)
            input_ = rnn_out
        time_dist_dense = TimeDistributed(Dense(units=self._vocab_size))(rnn_out)

        return time_dist_dense 
開發者ID:danieljl,項目名稱:keras-image-captioning,代碼行數:24,代碼來源:models.py

示例15: transition_block

# 需要導入模塊: from keras.layers import normalization [as 別名]
# 或者: from keras.layers.normalization import BatchNormalization [as 別名]
def transition_block(ip, nb_filter, dropout_rate=None, weight_decay=1E-4):
    ''' Apply BatchNorm, Relu 1x1, Conv2D, optional dropout and Maxpooling2D

    Args:
        ip: keras tensor
        nb_filter: number of filters
        dropout_rate: dropout rate
        weight_decay: weight decay factor

    Returns: keras tensor, after applying batch_norm, relu-conv, dropout, maxpool

    '''

    concat_axis = 1 if K.image_dim_ordering() == "th" else -1

    x = Convolution2D(nb_filter, 1, 1, init="he_uniform", border_mode="same", bias=False,
                      W_regularizer=l2(weight_decay))(ip)
    if dropout_rate:
        x = Dropout(dropout_rate)(x)
    x = AveragePooling2D((2, 2), strides=(2, 2))(x)

    x = BatchNormalization(mode=0, axis=concat_axis, gamma_regularizer=l2(weight_decay),
                           beta_regularizer=l2(weight_decay))(x)

    return x 
開發者ID:cvjena,項目名稱:semantic-embeddings,代碼行數:27,代碼來源:densenet_fast.py


注:本文中的keras.layers.normalization.BatchNormalization方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。