本文整理匯總了Python中keras.layers.dot方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.dot方法的具體用法?Python layers.dot怎麽用?Python layers.dot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.layers
的用法示例。
在下文中一共展示了layers.dot方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: self_attention
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import dot [as 別名]
def self_attention(x):
'''
. stands for dot product
* stands for elemwise multiplication
m = x . transpose(x)
n = softmax(m)
o = n . x
a = o * x
return a
'''
m = dot([x, x], axes=[2,2])
n = Activation('softmax')(m)
o = dot([n, x], axes=[2,1])
a = multiply([o, x])
return a
示例2: test_tiny_cos_random
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import dot [as 別名]
def test_tiny_cos_random(self):
np.random.seed(1988)
input_dim = 10
num_channels = 6
# Define a model
input_tensor = Input(shape=(input_dim,))
x1 = Dense(num_channels)(input_tensor)
x2 = Dense(num_channels)(x1)
x3 = Dense(num_channels)(x1)
x4 = dot([x2, x3], axes=-1, normalize=True)
x5 = Dense(num_channels)(x4)
model = Model(inputs=[input_tensor], outputs=[x5])
# Set some random weights
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
# Get the coreml model
self._test_model(model)
示例3: create_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import dot [as 別名]
def create_model(self):
user_id_input = Input(shape=[1], name='user')
item_id_input = Input(shape=[1], name='item')
user_embedding = Embedding(output_dim=EMBEDDING_SIZE, input_dim=self.max_user_id + 1,
input_length=1, name='user_embedding')(user_id_input)
item_embedding = Embedding(output_dim=EMBEDDING_SIZE, input_dim=self.max_item_id + 1,
input_length=1, name='item_embedding')(item_id_input)
# reshape from shape: (batch_size, input_length, embedding_size)
# to shape: (batch_size, input_length * embedding_size) which is
# equal to shape: (batch_size, embedding_size)
user_vecs = Flatten()(user_embedding)
item_vecs = Flatten()(item_embedding)
# y = merge([user_vecs, item_vecs], mode='dot', output_shape=(1,))
y = dot([user_vecs, item_vecs], axes=1)
model = Model(inputs=[user_id_input, item_id_input], outputs=[y])
model.compile(optimizer='adam', loss='mae')
return model
示例4: test_merge_dot
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import dot [as 別名]
def test_merge_dot():
i1 = layers.Input(shape=(4,))
i2 = layers.Input(shape=(4,))
o = layers.dot([i1, i2], axes=1)
assert o._keras_shape == (None, 1)
model = models.Model([i1, i2], o)
dot_layer = layers.Dot(axes=1)
o2 = dot_layer([i1, i2])
assert dot_layer.output_shape == (None, 1)
x1 = np.random.random((2, 4))
x2 = np.random.random((2, 4))
out = model.predict([x1, x2])
assert out.shape == (2, 1)
expected = np.zeros((2, 1))
expected[0, 0] = np.dot(x1[0], x2[0])
expected[1, 0] = np.dot(x1[1], x2[1])
assert_allclose(out, expected, atol=1e-4)
# Test with negative tuple of axes.
o = layers.dot([i1, i2], axes=(-1, -1))
assert o._keras_shape == (None, 1)
model = models.Model([i1, i2], o)
out = model.predict([x1, x2])
assert out.shape == (2, 1)
assert_allclose(out, expected, atol=1e-4)
示例5: create_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import dot [as 別名]
def create_model(self):
dat_input = Input(shape=(self.tdatlen,))
com_input = Input(shape=(self.comlen,))
sml_input = Input(shape=(self.smllen,))
ee = Embedding(output_dim=self.embdims, input_dim=self.tdatvocabsize, mask_zero=False)(dat_input)
se = Embedding(output_dim=self.smldims, input_dim=self.smlvocabsize, mask_zero=False)(sml_input)
se_enc = CuDNNGRU(self.recdims, return_state=True, return_sequences=True)
seout, state_sml = se_enc(se)
enc = CuDNNGRU(self.recdims, return_state=True, return_sequences=True)
encout, state_h = enc(ee, initial_state=state_sml)
de = Embedding(output_dim=self.embdims, input_dim=self.comvocabsize, mask_zero=False)(com_input)
dec = CuDNNGRU(self.recdims, return_sequences=True)
decout = dec(de, initial_state=state_h)
attn = dot([decout, encout], axes=[2, 2])
attn = Activation('softmax')(attn)
context = dot([attn, encout], axes=[2, 1])
ast_attn = dot([decout, seout], axes=[2, 2])
ast_attn = Activation('softmax')(ast_attn)
ast_context = dot([ast_attn, seout], axes=[2, 1])
context = concatenate([context, decout, ast_context])
out = TimeDistributed(Dense(self.recdims, activation="relu"))(context)
out = Flatten()(out)
out = Dense(self.comvocabsize, activation="softmax")(out)
model = Model(inputs=[dat_input, com_input, sml_input], outputs=out)
if self.config['multigpu']:
model = keras.utils.multi_gpu_model(model, gpus=2)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return self.config, model
示例6: bi_modal_attention
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import dot [as 別名]
def bi_modal_attention(x, y):
'''
. stands for dot product
* stands for elemwise multiplication
{} stands for concatenation
m1 = x . transpose(y) || m2 = y . transpose(x)
n1 = softmax(m1) || n2 = softmax(m2)
o1 = n1 . y || o2 = m2 . x
a1 = o1 * x || a2 = o2 * y
return {a1, a2}
'''
m1 = dot([x, y], axes=[2, 2])
n1 = Activation('softmax')(m1)
o1 = dot([n1, y], axes=[2, 1])
a1 = multiply([o1, x])
m2 = dot([y, x], axes=[2, 2])
n2 = Activation('softmax')(m2)
o2 = dot([n2, x], axes=[2, 1])
a2 = multiply([o2, y])
return concatenate([a1, a2])
示例7: eltwise
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import dot [as 別名]
def eltwise(layer, layer_in, layerId):
out = {}
if (layer['params']['layer_type'] == 'Multiply'):
# This input reverse is to handle visualization
out[layerId] = multiply(layer_in[::-1])
elif (layer['params']['layer_type'] == 'Sum'):
out[layerId] = add(layer_in[::-1])
elif (layer['params']['layer_type'] == 'Average'):
out[layerId] = average(layer_in[::-1])
elif (layer['params']['layer_type'] == 'Dot'):
out[layerId] = dot(layer_in[::-1], -1)
else:
out[layerId] = maximum(layer_in[::-1])
return out
示例8: skipgram_model
# 需要導入模塊: from keras import layers [as 別名]
# 或者: from keras.layers import dot [as 別名]
def skipgram_model(vocab_size, embedding_dim=100, paradigm='Functional'):
# Sequential paradigm
if paradigm == 'Sequential':
target = Sequential()
target.add(Embedding(vocab_size, embedding_dim, input_length=1))
context = Sequential()
context.add(Embedding(vocab_size, embedding_dim, input_length=1))
# merge the pivot and context models
model = Sequential()
model.add(Merge([target, context], mode='dot'))
model.add(Reshape((1,), input_shape=(1,1)))
model.add(Activation('sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy')
return model
# Functional paradigm
elif paradigm == 'Functional':
target = Input(shape=(1,), name='target')
context = Input(shape=(1,), name='context')
#print target.shape, context.shape
shared_embedding = Embedding(vocab_size, embedding_dim, input_length=1, name='shared_embedding')
embedding_target = shared_embedding(target)
embedding_context = shared_embedding(context)
#print embedding_target.shape, embedding_context.shape
merged_vector = dot([embedding_target, embedding_context], axes=-1)
reshaped_vector = Reshape((1,), input_shape=(1,1))(merged_vector)
#print merged_vector.shape
prediction = Dense(1, input_shape=(1,), activation='sigmoid')(reshaped_vector)
#print prediction.shape
model = Model(inputs=[target, context], outputs=prediction)
model.compile(optimizer='adam', loss='binary_crossentropy')
return model
else:
print('paradigm error')
return None