當前位置: 首頁>>代碼示例>>Python>>正文


Python core.Merge方法代碼示例

本文整理匯總了Python中keras.layers.core.Merge方法的典型用法代碼示例。如果您正苦於以下問題:Python core.Merge方法的具體用法?Python core.Merge怎麽用?Python core.Merge使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers.core的用法示例。


在下文中一共展示了core.Merge方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Merge [as 別名]
def create(self):

        assert self._config.textual_embedding_dim == 0, \
                'Embedding cannot be learnt but must be fixed'

        language_forward = Sequential()
        language_forward.add(self._config.recurrent_encoder(
            self._config.hidden_state_dim, return_sequences=False,
            input_shape=(self._config.max_input_time_steps, self._config.input_dim)))
        self.language_forward = language_forward

        language_backward = Sequential()
        language_backward.add(self._config.recurrent_encoder(
            self._config.hidden_state_dim, return_sequences=False,
            go_backwards=True,
            input_shape=(self._config.max_input_time_steps, self._config.input_dim)))
        self.language_backward = language_backward

        self.add(Merge([language_forward, language_backward]))
        self.deep_mlp()
        self.add(Dense(self._config.output_dim))
        self.add(Activation('softmax')) 
開發者ID:mateuszmalinowski,項目名稱:visual_turing_test-tutorial,代碼行數:24,代碼來源:model_zoo.py

示例2: test_merge

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Merge [as 別名]
def test_merge(self):
        layer_1 = core.Layer()
        layer_2 = core.Layer()
        layer = core.Merge([layer_1, layer_2])
        self._runner(layer) 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:7,代碼來源:test_core.py

示例3: test_merge_overlap

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Merge [as 別名]
def test_merge_overlap(self):
        print('Test merge overlap')
        left = Sequential()
        left.add(Dense(input_dim, nb_hidden))
        left.add(Activation('relu'))

        model = Sequential()
        model.add(Merge([left, left], mode='sum'))

        model.add(Dense(nb_hidden, nb_class))
        model.add(Activation('softmax'))

        model.compile(loss='categorical_crossentropy', optimizer='rmsprop')

        model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=1, validation_data=(X_test, y_test))
        model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=2, validation_data=(X_test, y_test))
        model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=2, validation_split=0.1)
        model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=1, validation_split=0.1)
        model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0)
        model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, shuffle=False)

        model.train_on_batch(X_train[:32], y_train[:32])

        loss = model.evaluate(X_train, y_train, verbose=0)
        print('loss:', loss)
        if loss > 0.6:
            raise Exception('Score too low, learning issue.')
        preds = model.predict(X_test, verbose=0)
        classes = model.predict_classes(X_test, verbose=0)
        probas = model.predict_proba(X_test, verbose=0)
        print(model.get_config(verbose=1))

        model.save_weights('temp.h5', overwrite=True)
        model.load_weights('temp.h5')

        nloss = model.evaluate(X_train, y_train, verbose=0)
        print(nloss)
        assert(loss == nloss) 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:40,代碼來源:test_sequential_model.py

示例4: convolution2Dgroup

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Merge [as 別名]
def convolution2Dgroup(n_group, nb_filter, nb_row, nb_col, **kwargs):
    def f(input):
        return Merge([
                         Convolution2D(nb_filter // n_group, nb_row, nb_col)(
                             splittensor(axis=1,
                                         ratio_split=n_group,
                                         id_split=i)(input))
                         for i in range(n_group)
                         ], mode='concat', concat_axis=1)

    return f 
開發者ID:heuritech,項目名稱:convnets-keras,代碼行數:13,代碼來源:customlayers.py

示例5: convolution2Dgroup

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Merge [as 別名]
def convolution2Dgroup(n_group, nb_filter, nb_row, nb_col, **kwargs):
    def f(input):
        return Merge([
            Convolution2D(nb_filter//n_group,nb_row,nb_col)(
                splittensor(axis=1,
                            ratio_split=n_group,
                            id_split=i)(input))
            for i in range(n_group)
        ],mode='concat',concat_axis=1)

    return f 
開發者ID:wentaozhu,項目名稱:deep-mil-for-whole-mammogram-classification,代碼行數:13,代碼來源:customlayers.py

示例6: comp_double

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Merge [as 別名]
def comp_double(self):
        '''
        double model. Simialar to two-pathway, except takes in a 4x33x33 patch and it's center 4x5x5 patch. merges paths at flatten layer.
        '''
        print 'Compiling double model...'
        single = Sequential()
        single.add(Convolution2D(64, 7, 7, border_mode='valid', W_regularizer=l1l2(l1=0.01, l2=0.01), input_shape=(4,33,33)))
        single.add(Activation('relu'))
        single.add(BatchNormalization(mode=0, axis=1))
        single.add(MaxPooling2D(pool_size=(2,2), strides=(1,1)))
        single.add(Dropout(0.5))
        single.add(Convolution2D(nb_filter=128, nb_row=5, nb_col=5, activation='relu', border_mode='valid', W_regularizer=l1l2(l1=0.01, l2=0.01)))
        single.add(BatchNormalization(mode=0, axis=1))
        single.add(MaxPooling2D(pool_size=(2,2), strides=(1,1)))
        single.add(Dropout(0.5))
        single.add(Convolution2D(nb_filter=256, nb_row=5, nb_col=5, activation='relu', border_mode='valid', W_regularizer=l1l2(l1=0.01, l2=0.01)))
        single.add(BatchNormalization(mode=0, axis=1))
        single.add(MaxPooling2D(pool_size=(2,2), strides=(1,1)))
        single.add(Dropout(0.5))
        single.add(Convolution2D(nb_filter=128, nb_row=3, nb_col=3, activation='relu', border_mode='valid', W_regularizer=l1l2(l1=0.01, l2=0.01)))
        single.add(Dropout(0.25))
        single.add(Flatten())

        # add small patch to train on
        five = Sequential()
        five.add(Reshape((100,1), input_shape = (4,5,5)))
        five.add(Flatten())
        five.add(MaxoutDense(128, nb_feature=5))
        five.add(Dropout(0.5))

        model = Sequential()
        # merge both paths
        model.add(Merge([five, single], mode='concat', concat_axis=1))
        model.add(Dense(5))
        model.add(Activation('softmax'))

        sgd = SGD(lr=0.001, decay=0.01, momentum=0.9)
        model.compile(loss='categorical_crossentropy', optimizer='sgd')
        print 'Done.'
        return model 
開發者ID:naldeborgh7575,項目名稱:brain_segmentation,代碼行數:42,代碼來源:Segmentation_Models.py

示例7: test_merge_sum

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Merge [as 別名]
def test_merge_sum(self):
        print('Test merge: sum')
        left = Sequential()
        left.add(Dense(input_dim, nb_hidden))
        left.add(Activation('relu'))

        right = Sequential()
        right.add(Dense(input_dim, nb_hidden))
        right.add(Activation('relu'))

        model = Sequential()
        model.add(Merge([left, right], mode='sum'))

        model.add(Dense(nb_hidden, nb_class))
        model.add(Activation('softmax'))

        model.compile(loss='categorical_crossentropy', optimizer='rmsprop')

        model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, validation_data=([X_test, X_test], y_test))
        model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=0, validation_data=([X_test, X_test], y_test))
        model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, validation_split=0.1)
        model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=0, validation_split=0.1)
        model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0)
        model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, shuffle=False)

        loss = model.evaluate([X_train, X_train], y_train, verbose=0)
        print('loss:', loss)
        if loss > 0.7:
            raise Exception('Score too low, learning issue.')
        preds = model.predict([X_test, X_test], verbose=0)
        classes = model.predict_classes([X_test, X_test], verbose=0)
        probas = model.predict_proba([X_test, X_test], verbose=0)
        print(model.get_config(verbose=1))

        print('test weight saving')
        model.save_weights('temp.h5', overwrite=True)
        left = Sequential()
        left.add(Dense(input_dim, nb_hidden))
        left.add(Activation('relu'))
        right = Sequential()
        right.add(Dense(input_dim, nb_hidden))
        right.add(Activation('relu'))
        model = Sequential()
        model.add(Merge([left, right], mode='sum'))
        model.add(Dense(nb_hidden, nb_class))
        model.add(Activation('softmax'))
        model.load_weights('temp.h5')
        model.compile(loss='categorical_crossentropy', optimizer='rmsprop')

        nloss = model.evaluate([X_train, X_train], y_train, verbose=0)
        print(nloss)
        assert(loss == nloss) 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:54,代碼來源:test_sequential_model.py

示例8: test_merge_concat

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Merge [as 別名]
def test_merge_concat(self):
        print('Test merge: concat')
        left = Sequential()
        left.add(Dense(input_dim, nb_hidden))
        left.add(Activation('relu'))

        right = Sequential()
        right.add(Dense(input_dim, nb_hidden))
        right.add(Activation('relu'))

        model = Sequential()
        model.add(Merge([left, right], mode='concat'))

        model.add(Dense(nb_hidden * 2, nb_class))
        model.add(Activation('softmax'))

        model.compile(loss='categorical_crossentropy', optimizer='rmsprop')

        model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, validation_data=([X_test, X_test], y_test))
        model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=0, validation_data=([X_test, X_test], y_test))
        model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, validation_split=0.1)
        model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=0, validation_split=0.1)
        model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0)
        model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, shuffle=False)

        loss = model.evaluate([X_train, X_train], y_train, verbose=0)
        print('loss:', loss)
        if loss > 0.6:
            raise Exception('Score too low, learning issue.')
        preds = model.predict([X_test, X_test], verbose=0)
        classes = model.predict_classes([X_test, X_test], verbose=0)
        probas = model.predict_proba([X_test, X_test], verbose=0)
        print(model.get_config(verbose=1))

        print('test weight saving')
        model.save_weights('temp.h5', overwrite=True)
        left = Sequential()
        left.add(Dense(input_dim, nb_hidden))
        left.add(Activation('relu'))

        right = Sequential()
        right.add(Dense(input_dim, nb_hidden))
        right.add(Activation('relu'))

        model = Sequential()
        model.add(Merge([left, right], mode='concat'))

        model.add(Dense(nb_hidden * 2, nb_class))
        model.add(Activation('softmax'))

        model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
        model.load_weights('temp.h5')

        nloss = model.evaluate([X_train, X_train], y_train, verbose=0)
        print(nloss)
        assert(loss == nloss) 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:58,代碼來源:test_sequential_model.py

示例9: test_merge_recursivity

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Merge [as 別名]
def test_merge_recursivity(self):
        print('Test merge recursivity')

        left = Sequential()
        left.add(Dense(input_dim, nb_hidden))
        left.add(Activation('relu'))

        right = Sequential()
        right.add(Dense(input_dim, nb_hidden))
        right.add(Activation('relu'))

        righter = Sequential()
        righter.add(Dense(input_dim, nb_hidden))
        righter.add(Activation('relu'))

        intermediate = Sequential()
        intermediate.add(Merge([left, right], mode='sum'))
        intermediate.add(Dense(nb_hidden, nb_hidden))
        intermediate.add(Activation('relu'))

        model = Sequential()
        model.add(Merge([intermediate, righter], mode='sum'))

        model.add(Dense(nb_hidden, nb_class))
        model.add(Activation('softmax'))

        model.compile(loss='categorical_crossentropy', optimizer='rmsprop')

        model.fit([X_train, X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, validation_data=([X_test, X_test, X_test], y_test))
        model.fit([X_train, X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=0, validation_data=([X_test, X_test, X_test], y_test))
        model.fit([X_train, X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, validation_split=0.1)
        model.fit([X_train, X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=False, verbose=0, validation_split=0.1)
        model.fit([X_train, X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0)
        model.fit([X_train, X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, shuffle=False)

        loss = model.evaluate([X_train, X_train, X_train], y_train, verbose=0)
        print('loss:', loss)
        if loss > 0.6:
            raise Exception('Score too low, learning issue.')
        preds = model.predict([X_test, X_test, X_test], verbose=0)
        classes = model.predict_classes([X_test, X_test, X_test], verbose=0)
        probas = model.predict_proba([X_test, X_test, X_test], verbose=0)
        print(model.get_config(verbose=1))

        model.save_weights('temp.h5', overwrite=True)
        model.load_weights('temp.h5')

        nloss = model.evaluate([X_train, X_train, X_train], y_train, verbose=0)
        print(nloss)
        assert(loss == nloss) 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:52,代碼來源:test_sequential_model.py


注:本文中的keras.layers.core.Merge方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。