當前位置: 首頁>>代碼示例>>Python>>正文


Python core.Flatten方法代碼示例

本文整理匯總了Python中keras.layers.core.Flatten方法的典型用法代碼示例。如果您正苦於以下問題:Python core.Flatten方法的具體用法?Python core.Flatten怎麽用?Python core.Flatten使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers.core的用法示例。


在下文中一共展示了core.Flatten方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_residual_model

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Flatten [as 別名]
def get_residual_model(is_mnist=True, img_channels=1, img_rows=28, img_cols=28):
    model = keras.models.Sequential()
    first_layer_channel = 128
    if is_mnist: # size to be changed to 32,32
        model.add(ZeroPadding2D((2,2), input_shape=(img_channels, img_rows, img_cols))) # resize (28,28)-->(32,32)
        # the first conv 
        model.add(Convolution2D(first_layer_channel, 3, 3, border_mode='same'))
    else:
        model.add(Convolution2D(first_layer_channel, 3, 3, border_mode='same', input_shape=(img_channels, img_rows, img_cols)))

    model.add(Activation('relu'))
    # [residual-based Conv layers]
    residual_blocks = design_for_residual_blocks(num_channel_input=first_layer_channel)
    model.add(residual_blocks)
    model.add(BatchNormalization(axis=1))
    model.add(Activation('relu'))
    # [Classifier]    
    model.add(Flatten())
    model.add(Dense(nb_classes))
    model.add(Activation('softmax'))
    # [END]
    return model 
開發者ID:keunwoochoi,項目名稱:residual_block_keras,代碼行數:24,代碼來源:example.py

示例2: model_create

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Flatten [as 別名]
def model_create(input_shape, num_classes):
        logging.debug('input_shape {}'.format(input_shape))

        model = Sequential()

        model.add(Conv2D(32, (3, 3), border_mode='same', input_shape=input_shape))
        model.add(Activation('relu'))

        model.add(Conv2D(32, (3, 3)))
        model.add(Activation('relu'))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.5))

        model.add(Flatten())
        model.add(Dense(128))
        model.add(Activation('relu'))
        model.add(Dropout(0.5))

        model.add(Dense(num_classes))
        model.add(Activation('softmax'))

        # use binary_crossentropy if has just 2 prediction yes or no
        model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy'])

        return model 
開發者ID:abhishekrana,項目名稱:DeepFashion,代碼行數:27,代碼來源:cnn.py

示例3: test_img_clf

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Flatten [as 別名]
def test_img_clf(self):
        print('image classification data:')
        (X_train, y_train), (X_test, y_test) = get_test_data(nb_train=1000, nb_test=200, input_shape=(3, 32, 32),
                                                             classification=True, nb_class=2)
        print('X_train:', X_train.shape)
        print('X_test:', X_test.shape)
        print('y_train:', y_train.shape)
        print('y_test:', y_test.shape)

        y_train = to_categorical(y_train)
        y_test = to_categorical(y_test)

        model = Sequential()
        model.add(Convolution2D(32, 3, 32, 32))
        model.add(Activation('sigmoid'))
        model.add(Flatten())
        model.add(Dense(32, y_test.shape[-1]))
        model.add(Activation('softmax'))
        model.compile(loss='categorical_crossentropy', optimizer='sgd')
        history = model.fit(X_train, y_train, nb_epoch=12, batch_size=16, validation_data=(X_test, y_test), show_accuracy=True, verbose=2)
        self.assertTrue(history.history['val_acc'][-1] > 0.9) 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:23,代碼來源:test_tasks.py

示例4: value_distribution_network

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Flatten [as 別名]
def value_distribution_network(input_shape, num_atoms, action_size, learning_rate):
        """Model Value Distribution

        With States as inputs and output Probability Distributions for all Actions
        """

        state_input = Input(shape=(input_shape)) 
        cnn_feature = Convolution2D(32, 8, 8, subsample=(4,4), activation='relu')(state_input)
        cnn_feature = Convolution2D(64, 4, 4, subsample=(2,2), activation='relu')(cnn_feature)
        cnn_feature = Convolution2D(64, 3, 3, activation='relu')(cnn_feature)
        cnn_feature = Flatten()(cnn_feature)
        cnn_feature = Dense(512, activation='relu')(cnn_feature)

        distribution_list = []
        for i in range(action_size):
            distribution_list.append(Dense(num_atoms, activation='softmax')(cnn_feature))

        model = Model(input=state_input, output=distribution_list)

        adam = Adam(lr=learning_rate)
        model.compile(loss='categorical_crossentropy',optimizer=adam)

        return model 
開發者ID:flyyufelix,項目名稱:C51-DDQN-Keras,代碼行數:25,代碼來源:networks.py

示例5: cnn_2D

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Flatten [as 別名]
def cnn_2D(self, input_shape, modual=''):
        #建立Sequential模型    
        model_in = Input(input_shape) 
        model = Conv2D(
                filters = 6,
                kernel_size = (3, 3),
                input_shape = input_shape,
                activation='relu',
                kernel_initializer='he_normal',
                name = modual+'conv1'
            )(model_in)# now 30x30x6
        model = MaxPooling2D(pool_size=(2,2))(model)# now 15x15x6
        model = Conv2D(
                filters = 8,
                kernel_size = (4, 4),
                activation='relu',
                kernel_initializer='he_normal',
                name = modual+'conv2'
            )(model)# now 12x12x8
        model = MaxPooling2D(pool_size=(2,2))(model)# now 6x6x8
        model = Flatten()(model)
        model = Dropout(0.5)(model)
        model_out = Dense(100, activation='relu', name = modual+'fc1')(model)
      
        return model_in, model_out 
開發者ID:xyj77,項目名稱:MCF-3D-CNN,代碼行數:27,代碼來源:liver_model.py

示例6: cnn_3D

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Flatten [as 別名]
def cnn_3D(self, input_shape, modual=''):
        #建立Sequential模型
        model_in = Input(input_shape)    
        model = Convolution3D(
                filters = 6,
                kernel_size = (3, 3, 3),
                input_shape = input_shape,
                activation='relu',
                kernel_initializer='he_normal',
                name = modual+'conv1'
            )(model_in)# now 30x30x3x6
        model = MaxPooling3D(pool_size=(2,2,1))(model)# now 15x15x3x6
        model = Convolution3D(
                filters = 8,
                kernel_size = (4, 4, 3),
                activation='relu',
                kernel_initializer='he_normal',
                name = modual+'conv2'
            )(model)# now 12x12x1x8
        model = MaxPooling3D(pool_size=(2,2,1))(model)# now 6x6x1x8
        model = Flatten()(model)
        model = Dropout(0.5)(model)
        model_out = Dense(100, activation='relu', name = modual+'fc1')(model)
      
        return model_in, model_out 
開發者ID:xyj77,項目名稱:MCF-3D-CNN,代碼行數:27,代碼來源:liver_model.py

示例7: get_shallow_convnet

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Flatten [as 別名]
def get_shallow_convnet(window_size=4096, channels=2, output_size=84):
    inputs = Input(shape=(window_size, channels))

    conv = ComplexConv1D(
        32, 512, strides=16,
        activation='relu')(inputs)
    pool = AveragePooling1D(pool_size=4, strides=2)(conv)

    pool = Permute([2, 1])(pool)
    flattened = Flatten()(pool)

    dense = ComplexDense(2048, activation='relu')(flattened)
    predictions = ComplexDense(
        output_size, 
        activation='sigmoid',
        bias_initializer=Constant(value=-5))(dense)
    predictions = GetReal(predictions)
    model = Model(inputs=inputs, outputs=predictions)

    model.compile(optimizer=Adam(lr=1e-4),
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    return model 
開發者ID:ChihebTrabelsi,項目名稱:deep_complex_networks,代碼行數:25,代碼來源:__init__.py

示例8: discriminator

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Flatten [as 別名]
def discriminator(img_dim,alpha=0.2):
    model = Sequential()
    model.add(
            Conv2D(64, kernel_size=5,strides=2,
            padding='same',
            input_shape=img_dim)
            )
    model.add(LeakyReLU(alpha))
    model.add(Conv2D(128,kernel_size=5,strides=2,padding='same'))
    model.add(BatchNormalization())
    model.add(LeakyReLU(alpha))
    model.add(Conv2D(256,kernel_size=5,strides=2,padding='same'))
    model.add(BatchNormalization())
    model.add(LeakyReLU(alpha))
    model.add(Flatten())
    model.add(Dense(1))
    model.add(Activation('sigmoid'))
    return model

# Define a combination of Generator and Discriminator 
開發者ID:PacktPublishing,項目名稱:Intelligent-Projects-Using-Python,代碼行數:22,代碼來源:captcha_gan.py

示例9: build_model

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Flatten [as 別名]
def build_model(self):

        model = Sequential()
        model.add(Convolution2D(
            16, 8, 8, input_shape=(self.num_frames,) + self.frame_dim,
            subsample=(4, 4), activation="relu", init="he_uniform"
        ))
        model.add(Convolution2D(
            16, 4, 4, subsample=(2, 2), activation="relu", init="he_uniform"
        ))
        model.add(Convolution2D(
            32, 3, 3, subsample=(1, 1), activation="relu", init="he_uniform"
        ))
        model.add(Flatten())
        model.add(Dense(
            512, activation="relu", init="he_uniform"
        ))
        model.add(Dense(
            self.num_actions, activation="linear", init="he_uniform"
        ))

        model.compile(loss=self.q_loss, optimizer=self.optimizer)

        self.model = model 
開發者ID:ntasfi,項目名稱:PyGame-Learning-Environment,代碼行數:26,代碼來源:example_support.py

示例10: drqn

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Flatten [as 別名]
def drqn(input_shape, action_size, learning_rate):

        model = Sequential()
        model.add(TimeDistributed(Convolution2D(32, 8, 8, subsample=(4,4), activation='relu'), input_shape=(input_shape)))
        model.add(TimeDistributed(Convolution2D(64, 4, 4, subsample=(2,2), activation='relu')))
        model.add(TimeDistributed(Convolution2D(64, 3, 3, activation='relu')))
        model.add(TimeDistributed(Flatten()))

        # Use all traces for training
        #model.add(LSTM(512, return_sequences=True,  activation='tanh'))
        #model.add(TimeDistributed(Dense(output_dim=action_size, activation='linear')))

        # Use last trace for training
        model.add(LSTM(512,  activation='tanh'))
        model.add(Dense(output_dim=action_size, activation='linear'))

        adam = Adam(lr=learning_rate)
        model.compile(loss='mse',optimizer=adam)

        return model 
開發者ID:flyyufelix,項目名稱:VizDoom-Keras-RL,代碼行數:22,代碼來源:networks.py

示例11: a2c_lstm

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Flatten [as 別名]
def a2c_lstm(input_shape, action_size, value_size, learning_rate):
        """Actor and Critic Network share convolution layers with LSTM
        """

        state_input = Input(shape=(input_shape)) # 4x64x64x3
        x = TimeDistributed(Convolution2D(32, 8, 8, subsample=(4,4), activation='relu'))(state_input)
        x = TimeDistributed(Convolution2D(64, 4, 4, subsample=(2,2), activation='relu'))(x)
        x = TimeDistributed(Convolution2D(64, 3, 3, activation='relu'))(x)
        x = TimeDistributed(Flatten())(x)

        x = LSTM(512, activation='tanh')(x)

        # Actor Stream
        actor = Dense(action_size, activation='softmax')(x)

        # Critic Stream
        critic = Dense(value_size, activation='linear')(x)

        model = Model(input=state_input, output=[actor, critic])

        adam = Adam(lr=learning_rate, clipnorm=1.0)
        model.compile(loss=['categorical_crossentropy', 'mse'], optimizer=adam, loss_weights=[1., 1.])

        return model 
開發者ID:flyyufelix,項目名稱:VizDoom-Keras-RL,代碼行數:26,代碼來源:networks.py

示例12: CapsuleNet

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Flatten [as 別名]
def CapsuleNet(n_capsule = 10, n_routings = 5, capsule_dim = 16,
     n_recurrent=100, dropout_rate=0.2, l2_penalty=0.0001):
    K.clear_session()

    inputs = Input(shape=(170,))
    x = Embedding(21099, 300,  trainable=True)(inputs)        
    x = SpatialDropout1D(dropout_rate)(x)
    x = Bidirectional(
        CuDNNGRU(n_recurrent, return_sequences=True,
                 kernel_regularizer=l2(l2_penalty),
                 recurrent_regularizer=l2(l2_penalty)))(x)
    x = PReLU()(x)
    x = Capsule(
        num_capsule=n_capsule, dim_capsule=capsule_dim,
        routings=n_routings, share_weights=True)(x)
    x = Flatten(name = 'concatenate')(x)
    x = Dropout(dropout_rate)(x)
#     fc = Dense(128, activation='sigmoid')(x)
    outputs = Dense(6, activation='softmax')(x)
    model = Model(inputs=inputs, outputs=outputs)
    model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy'])
    return model 
開發者ID:WeavingWong,項目名稱:DigiX_HuaWei_Population_Age_Attribution_Predict,代碼行數:24,代碼來源:models.py

示例13: CapsuleNet_v2

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Flatten [as 別名]
def CapsuleNet_v2(n_capsule = 10, n_routings = 5, capsule_dim = 16,
     n_recurrent=100, dropout_rate=0.2, l2_penalty=0.0001):
    K.clear_session()

    inputs = Input(shape=(200,))
    x = Embedding(20000, 300,  trainable=True)(inputs)        
    x = SpatialDropout1D(dropout_rate)(x)
    x = Bidirectional(
        CuDNNGRU(n_recurrent, return_sequences=True,
                 kernel_regularizer=l2(l2_penalty),
                 recurrent_regularizer=l2(l2_penalty)))(x)
    x = PReLU()(x)
    x = Capsule(
        num_capsule=n_capsule, dim_capsule=capsule_dim,
        routings=n_routings, share_weights=True)(x)
    x = Flatten(name = 'concatenate')(x)
    x = Dropout(dropout_rate)(x)
#     fc = Dense(128, activation='sigmoid')(x)
    outputs = Dense(6, activation='softmax')(x)
    model = Model(inputs=inputs, outputs=outputs)
    model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=['accuracy'])
    return model 
開發者ID:WeavingWong,項目名稱:DigiX_HuaWei_Population_Age_Attribution_Predict,代碼行數:24,代碼來源:models.py

示例14: cnn

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Flatten [as 別名]
def cnn(trn_set, tst_set):
    trn_x, trn_y = trn_set
    trn_y = np.squeeze(trn_y, axis=2)
    tst_x, tst_y = tst_set
    tst_y = np.squeeze(tst_y, axis=2)

    model = Sequential()

    model.add(Convolution2D(2, 5, 5, activation='sigmoid', input_shape=(1, 28, 28)))
    model.add(MaxPooling2D(pool_size=(3, 3)))
    model.add(Flatten())
    model.add(Dense(10, activation='softmax'))

    model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.1))
    return model, trn_x, trn_y, tst_x, tst_y

################################################################################ 
開發者ID:integeruser,項目名稱:MNIST-cnn,代碼行數:19,代碼來源:train_and_save.py

示例15: build

# 需要導入模塊: from keras.layers import core [as 別名]
# 或者: from keras.layers.core import Flatten [as 別名]
def build(width, height, depth, classes):
        # Initialize the model along with the input shape to be 'channels_last'
        model = Sequential()
        input_shape = (height, width, depth)

        # Update the image shape if 'channels_first' is being used
        if K.image_data_format() == 'channels_first':
            input_shape = (depth, height, width)

        # Define the first (and only) CONV => RELU layer
        model.add(Conv2D(32, (3, 3), padding='same', input_shape=input_shape))
        model.add(Activation('relu'))

        # Add a softmax classifier
        model.add(Flatten())
        model.add(Dense(classes))
        model.add(Activation('softmax'))

        # Return the network architecture
        return model 
開發者ID:Abhs9,項目名稱:DL4CVStarterBundle,代碼行數:22,代碼來源:shallownet.py


注:本文中的keras.layers.core.Flatten方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。