當前位置: 首頁>>代碼示例>>Python>>正文


Python convolutional.ZeroPadding2D方法代碼示例

本文整理匯總了Python中keras.layers.convolutional.ZeroPadding2D方法的典型用法代碼示例。如果您正苦於以下問題:Python convolutional.ZeroPadding2D方法的具體用法?Python convolutional.ZeroPadding2D怎麽用?Python convolutional.ZeroPadding2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers.convolutional的用法示例。


在下文中一共展示了convolutional.ZeroPadding2D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_residual_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import ZeroPadding2D [as 別名]
def get_residual_model(is_mnist=True, img_channels=1, img_rows=28, img_cols=28):
    model = keras.models.Sequential()
    first_layer_channel = 128
    if is_mnist: # size to be changed to 32,32
        model.add(ZeroPadding2D((2,2), input_shape=(img_channels, img_rows, img_cols))) # resize (28,28)-->(32,32)
        # the first conv 
        model.add(Convolution2D(first_layer_channel, 3, 3, border_mode='same'))
    else:
        model.add(Convolution2D(first_layer_channel, 3, 3, border_mode='same', input_shape=(img_channels, img_rows, img_cols)))

    model.add(Activation('relu'))
    # [residual-based Conv layers]
    residual_blocks = design_for_residual_blocks(num_channel_input=first_layer_channel)
    model.add(residual_blocks)
    model.add(BatchNormalization(axis=1))
    model.add(Activation('relu'))
    # [Classifier]    
    model.add(Flatten())
    model.add(Dense(nb_classes))
    model.add(Activation('softmax'))
    # [END]
    return model 
開發者ID:keunwoochoi,項目名稱:residual_block_keras,代碼行數:24,代碼來源:example.py

示例2: transition_block

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import ZeroPadding2D [as 別名]
def transition_block(input,nb_filter,dropout_rate=None,pooltype=1,weight_decay=1e-4):
    x = BatchNormalization(axis=-1,epsilon=1.1e-5)(input)
    x = Activation('relu')(x)
    x = Conv2D(nb_filter,(1,1),kernel_initializer='he_normal', padding='same', use_bias=False,
               kernel_regularizer=l2(weight_decay))(x)

    if(dropout_rate):
        x = Dropout(dropout_rate)(x)

    if(pooltype==2):
        x = AveragePooling2D((2,2),strides=(2,2))(x)
    elif(pooltype==1):
        x = ZeroPadding2D(padding=(0,1))(x)
        x = AveragePooling2D((2,2),strides=(2,1))(x)
    elif(pooltype==3):
        x = AveragePooling2D((2,2),strides=(2,1))(x)
    return x,nb_filter 
開發者ID:jarvisqi,項目名稱:deep_learning,代碼行數:19,代碼來源:densenet.py

示例3: transition_block

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import ZeroPadding2D [as 別名]
def transition_block(input, nb_filter, dropout_rate=None, pooltype=1, weight_decay=1e-4):
    x = BatchNormalization(axis=-1, epsilon=1.1e-5)(input)
    x = Activation('relu')(x)
    x = Conv2D(nb_filter, (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
               kernel_regularizer=l2(weight_decay))(x)

    if(dropout_rate):
        x = Dropout(dropout_rate)(x)

    if(pooltype == 2):
        x = AveragePooling2D((2, 2), strides=(2, 2))(x)
    elif(pooltype == 1):
        x = ZeroPadding2D(padding = (0, 1))(x)
        x = AveragePooling2D((2, 2), strides=(2, 1))(x)
    elif(pooltype == 3):
        x = AveragePooling2D((2, 2), strides=(2, 1))(x)
    return x, nb_filter 
開發者ID:YCG09,項目名稱:chinese_ocr,代碼行數:19,代碼來源:densenet.py

示例4: build_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import ZeroPadding2D [as 別名]
def build_model(self):
    

        img_input = Input(shape=(img_channels, img_rows, img_cols))

        # one conv at the beginning (spatial size: 32x32)
        x = ZeroPadding2D((1, 1))(img_input)
        x = Convolution2D(16, nb_row=3, nb_col=3)(x)

        # Stage 1 (spatial size: 32x32)
        x = bottleneck(x, n, 16, 16 * k, dropout=0.3, subsample=(1, 1))
        # Stage 2 (spatial size: 16x16)
        x = bottleneck(x, n, 16 * k, 32 * k, dropout=0.3, subsample=(2, 2))
        # Stage 3 (spatial size: 8x8)
        x = bottleneck(x, n, 32 * k, 64 * k, dropout=0.3, subsample=(2, 2))

        x = BatchNormalization(mode=0, axis=1)(x)
        x = Activation('relu')(x)
        x = AveragePooling2D((8, 8), strides=(1, 1))(x)
        x = Flatten()(x)
        preds = Dense(nb_classes, activation='softmax')(x)

        self.model = Model(input=img_input, output=preds)
        
        self.keras_get_params() 
開發者ID:uoguelph-mlrg,項目名稱:Theano-MPI,代碼行數:27,代碼來源:wresnet.py

示例5: transition_block

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import ZeroPadding2D [as 別名]
def transition_block(input, nb_filter, dropout_rate=None, pooltype=1, weight_decay=1e-4):
    x = BatchNormalization(axis=-1, epsilon=1.1e-5)(input)
    x = Activation('relu')(x)
    x = Conv2D(nb_filter, (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
               kernel_regularizer=l2(weight_decay))(x)

    if dropout_rate:
        x = Dropout(dropout_rate)(x)

    if pooltype == 2:
        x = AveragePooling2D((2, 2), strides=(2, 2))(x)
    elif pooltype == 1:
        x = ZeroPadding2D(padding=(0, 1))(x)
        x = AveragePooling2D((2, 2), strides=(2, 1))(x)
    elif pooltype == 3:
        x = AveragePooling2D((2, 2), strides=(2, 1))(x)
    return x, nb_filter 
開發者ID:bing1zhi2,項目名稱:chinese_ocr,代碼行數:19,代碼來源:densenet.py

示例6: create

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import ZeroPadding2D [as 別名]
def create(self):
        model = Sequential()

        model.add(ZeroPadding2D((1,1), input_shape=self._visual_dim))
        model.add(Convolution2D(64, 3, 3, activation='relu'))

        model.add(Flatten())
        self._model_output_dim = 4096
        model.add(Dense(self._model_output_dim, activation='relu'))
        model.add(Dropout(0.5))

        if self._weights_path:
            model.load_weights(self._weights_path)
        return model 
開發者ID:mateuszmalinowski,項目名稱:visual_turing_test-tutorial,代碼行數:16,代碼來源:visual_model_zoo.py

示例7: ConvBlock

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import ZeroPadding2D [as 別名]
def ConvBlock(layers, model, filters):
    for i in range(layers): 
        model.add(ZeroPadding2D((1,1)))
        model.add(Convolution2D(filters, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))
    model.add(Dropout(0.25)) 
開發者ID:iitmcvg,項目名稱:OCR-Handwritten-Text,代碼行數:8,代碼來源:simple_cnn.py

示例8: _small_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import ZeroPadding2D [as 別名]
def _small_model(self):
        '''
        Alternative model architecture with fewer layers for computationally expensive
            training datasets
        '''
        print 'Compiling Small Net...'

        model = Sequential()
        model.add(ZeroPadding2D((1,1), input_shape=self.input_shape))
        model.add(Convolution2D(64, self.kernel_size, self.kernel_size,activation='relu',
                                input_shape=self.input_shape))
        model.add(ZeroPadding2D((1,1)))
        model.add(Convolution2D(64, self.kernel_size, self.kernel_size,
                                activation='relu'))
        model.add(MaxPooling2D((2,2), strides=(2,2)))

        model.add(ZeroPadding2D((1,1)))
        model.add(Convolution2D(128, self.kernel_size, self.kernel_size,
                                activation='relu'))
        model.add(ZeroPadding2D((1,1)))
        model.add(Convolution2D(128, self.kernel_size, self.kernel_size,
                                activation='relu'))
        model.add(MaxPooling2D((2,2), strides=(2,2)))

        model.add(Flatten())
        model.add(Dense(2048, activation='relu'))
        model.add(Dropout(0.5))
        model.add(Dense(2048, activation='relu'))
        model.add(Dropout(0.5))
        model.add(Dense(self.nb_classes, activation='softmax'))

        sgd = SGD(lr=self.lr, decay=0.01, momentum=0.9, nesterov=True)
        model.compile(optimizer = 'sgd', loss = 'categorical_crossentropy')
        return model 
開發者ID:DigitalGlobe,項目名稱:mltools,代碼行數:36,代碼來源:pool_net.py

示例9: create_cnn_model_arch

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import ZeroPadding2D [as 別名]
def create_cnn_model_arch():
    pool_size = 2 # we will use 2x2 pooling throughout
    conv_depth_1 = 32 # we will initially have 32 kernels per conv. layer...
    conv_depth_2 = 64 # ...switching to 64 after the first pooling layer
    kernel_size = 3 # we will use 3x3 kernels throughout
    drop_prob = 0.5 # dropout in the FC layer with probability 0.5
    hidden_size = 32 # the FC layer will have 512 neurons
    num_classes = 8 # there are 8 fish types
    # Conv [32] -> Conv [32] -> Pool
    cnn_model = Sequential()
    cnn_model.add(ZeroPadding2D((1, 1), input_shape=(3, 32, 32), dim_ordering='th'))
    cnn_model.add(Convolution2D(conv_depth_1, kernel_size, kernel_size, activation='relu',
      dim_ordering='th'))
    cnn_model.add(ZeroPadding2D((1, 1), dim_ordering='th'))
    cnn_model.add(Convolution2D(conv_depth_1, kernel_size, kernel_size, activation='relu',
      dim_ordering='th'))
    cnn_model.add(MaxPooling2D(pool_size=(pool_size, pool_size), strides=(2, 2),
      dim_ordering='th'))
    # Conv [64] -> Conv [64] -> Pool
    cnn_model.add(ZeroPadding2D((1, 1), dim_ordering='th'))
    cnn_model.add(Convolution2D(conv_depth_2, kernel_size, kernel_size, activation='relu',
      dim_ordering='th'))
    cnn_model.add(ZeroPadding2D((1, 1), dim_ordering='th'))
    cnn_model.add(Convolution2D(conv_depth_2, kernel_size, kernel_size, activation='relu',
      dim_ordering='th'))
    cnn_model.add(MaxPooling2D(pool_size=(pool_size, pool_size), strides=(2, 2),
     dim_ordering='th'))
    # Now flatten to 1D, apply FC then ReLU (with dropout) and finally softmax(output layer)
    cnn_model.add(Flatten())
    cnn_model.add(Dense(hidden_size, activation='relu'))
    cnn_model.add(Dropout(drop_prob))
    cnn_model.add(Dense(hidden_size, activation='relu'))
    cnn_model.add(Dropout(drop_prob))
    cnn_model.add(Dense(num_classes, activation='softmax'))
    # initiating the stochastic gradient descent optimiser
    stochastic_gradient_descent = SGD(lr=1e-2, decay=1e-6, momentum=0.9, nesterov=True)    cnn_model.compile(optimizer=stochastic_gradient_descent,  # using the stochastic gradient descent optimiser
                  loss='categorical_crossentropy')  # using the cross-entropy loss function
    return cnn_model 
開發者ID:PacktPublishing,項目名稱:Deep-Learning-By-Example,代碼行數:40,代碼來源:fish_detection_example.py

示例10: resnet_graph

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import ZeroPadding2D [as 別名]
def resnet_graph(input_image, architecture, stage5=False):
    assert architecture in ["resnet50", "resnet101"]
    # Stage 1
    x = ZeroPadding2D((3, 3))(input_image)
    x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x)
    x = BatchNorm(axis=3, name='bn_conv1')(x)
    x = Activation('relu')(x)
    C1 = x = MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x)
    # Stage 2
    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
    # Stage 3
    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
    # Stage 4
    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    block_count = {"resnet50": 5, "resnet101": 22}[architecture]
    for i in range(block_count):
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i))
    C4 = x
    # Stage 5
    if stage5:
        x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
        x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
        C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
    else:
        C5 = None
    return [C1, C2, C3, C4, C5]


############################################################
#  Proposal Layer
############################################################ 
開發者ID:DeepinSC,項目名稱:PyTorch-Luna16,代碼行數:38,代碼來源:MaskRCNN.py

示例11: design_for_residual_blocks

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import ZeroPadding2D [as 別名]
def design_for_residual_blocks(num_channel_input=1):
    ''''''
    model = Sequential() # it's a CONTAINER, not MODEL
    # set numbers
    num_big_blocks = 3
    image_patch_sizes = [[3,3]]*num_big_blocks
    pool_sizes = [(2,2)]*num_big_blocks
    n_features = [128, 256, 512, 512, 1024]
    n_features_next = [256, 512, 512, 512, 1024]
    height_input = 32
    width_input = 32
    for conv_idx in range(num_big_blocks):    
        n_feat_here = n_features[conv_idx]
        # residual block 0
        model.add(residual_blocks.building_residual_block(  (num_channel_input, height_input, width_input),
                                                            n_feat_here,
                                                            kernel_sizes=image_patch_sizes[conv_idx]
                                                            ))

        # residual block 1 (you can add it as you want (and your resources allow..))
        if False:
            model.add(residual_blocks.building_residual_block(  (n_feat_here, height_input, width_input),
                                                                n_feat_here,
                                                                kernel_sizes=image_patch_sizes[conv_idx]
                                                                ))
        
        # the last residual block N-1
        # the last one : pad zeros, subsamples, and increase #channels
        pad_height = compute_padding_length(height_input, pool_sizes[conv_idx][0], image_patch_sizes[conv_idx][0])
        pad_width = compute_padding_length(width_input, pool_sizes[conv_idx][1], image_patch_sizes[conv_idx][1])
        model.add(ZeroPadding2D(padding=(pad_height,pad_width))) 
        height_input += 2*pad_height
        width_input += 2*pad_width
        n_feat_next = n_features_next[conv_idx]
        model.add(residual_blocks.building_residual_block(  (n_feat_here, height_input, width_input),
                                                            n_feat_next,
                                                            kernel_sizes=image_patch_sizes[conv_idx],
                                                            is_subsample=True,
                                                            subsample=pool_sizes[conv_idx]
                                                            ))

        height_input, width_input = model.output_shape[2:]
        # width_input  = int(width_input/pool_sizes[conv_idx][1])
        num_channel_input = n_feat_next

    # Add average pooling at the end:
    print('Average pooling, from (%d,%d) to (1,1)' % (height_input, width_input))
    model.add(AveragePooling2D(pool_size=(height_input, width_input)))

    return model 
開發者ID:keunwoochoi,項目名稱:residual_block_keras,代碼行數:52,代碼來源:example.py

示例12: VGG_16

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import ZeroPadding2D [as 別名]
def VGG_16(weights_path=None, heatmap=False):
    model = Sequential()
    if heatmap:
        model.add(ZeroPadding2D((1, 1), input_shape=(3, None, None)))
    else:
        model.add(ZeroPadding2D((1, 1), input_shape=(3, 224, 224)))
    model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_1'))
    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_2'))
    model.add(MaxPooling2D((2, 2), strides=(2, 2)))

    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_1'))
    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_2'))
    model.add(MaxPooling2D((2, 2), strides=(2, 2)))

    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_1'))
    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_2'))
    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_3'))
    model.add(MaxPooling2D((2, 2), strides=(2, 2)))

    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_1'))
    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_2'))
    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_3'))
    model.add(MaxPooling2D((2, 2), strides=(2, 2)))

    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_1'))
    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_2'))
    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_3'))
    model.add(MaxPooling2D((2, 2), strides=(2, 2)))

    if heatmap:
        model.add(Convolution2D(4096, 7, 7, activation='relu', name='dense_1'))
        model.add(Convolution2D(4096, 1, 1, activation='relu', name='dense_2'))
        model.add(Convolution2D(1000, 1, 1, name='dense_3'))
        model.add(Softmax4D(axis=1, name='softmax'))
    else:
        model.add(Flatten(name='flatten'))
        model.add(Dense(4096, activation='relu', name='dense_1'))
        model.add(Dropout(0.5))
        model.add(Dense(4096, activation='relu', name='dense_2'))
        model.add(Dropout(0.5))
        model.add(Dense(1000, name='dense_3'))
        model.add(Activation('softmax', name='softmax'))

    if weights_path:
        model.load_weights(weights_path)
    return model 
開發者ID:heuritech,項目名稱:convnets-keras,代碼行數:60,代碼來源:convnets.py

示例13: AlexNet

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import ZeroPadding2D [as 別名]
def AlexNet(weights_path=None, heatmap=False):
    if heatmap:
        inputs = Input(shape=(3, None, None))
    else:
        inputs = Input(shape=(3, 227, 227))

    conv_1 = Convolution2D(96, 11, 11, subsample=(4, 4), activation='relu',
                           name='conv_1')(inputs)

    conv_2 = MaxPooling2D((3, 3), strides=(2, 2))(conv_1)
    conv_2 = crosschannelnormalization(name='convpool_1')(conv_2)
    conv_2 = ZeroPadding2D((2, 2))(conv_2)
    conv_2 = merge([
                       Convolution2D(128, 5, 5, activation='relu', name='conv_2_' + str(i + 1))(
                           splittensor(ratio_split=2, id_split=i)(conv_2)
                       ) for i in range(2)], mode='concat', concat_axis=1, name='conv_2')

    conv_3 = MaxPooling2D((3, 3), strides=(2, 2))(conv_2)
    conv_3 = crosschannelnormalization()(conv_3)
    conv_3 = ZeroPadding2D((1, 1))(conv_3)
    conv_3 = Convolution2D(384, 3, 3, activation='relu', name='conv_3')(conv_3)

    conv_4 = ZeroPadding2D((1, 1))(conv_3)
    conv_4 = merge([
                       Convolution2D(192, 3, 3, activation='relu', name='conv_4_' + str(i + 1))(
                           splittensor(ratio_split=2, id_split=i)(conv_4)
                       ) for i in range(2)], mode='concat', concat_axis=1, name='conv_4')

    conv_5 = ZeroPadding2D((1, 1))(conv_4)
    conv_5 = merge([
                       Convolution2D(128, 3, 3, activation='relu', name='conv_5_' + str(i + 1))(
                           splittensor(ratio_split=2, id_split=i)(conv_5)
                       ) for i in range(2)], mode='concat', concat_axis=1, name='conv_5')

    dense_1 = MaxPooling2D((3, 3), strides=(2, 2), name='convpool_5')(conv_5)

    if heatmap:
        dense_1 = Convolution2D(4096, 6, 6, activation='relu', name='dense_1')(dense_1)
        dense_2 = Convolution2D(4096, 1, 1, activation='relu', name='dense_2')(dense_1)
        dense_3 = Convolution2D(1000, 1, 1, name='dense_3')(dense_2)
        prediction = Softmax4D(axis=1, name='softmax')(dense_3)
    else:
        dense_1 = Flatten(name='flatten')(dense_1)
        dense_1 = Dense(4096, activation='relu', name='dense_1')(dense_1)
        dense_2 = Dropout(0.5)(dense_1)
        dense_2 = Dense(4096, activation='relu', name='dense_2')(dense_2)
        dense_3 = Dropout(0.5)(dense_2)
        dense_3 = Dense(1000, name='dense_3')(dense_3)
        prediction = Activation('softmax', name='softmax')(dense_3)

    model = Model(input=inputs, output=prediction)

    if weights_path:
        model.load_weights(weights_path)

    return model 
開發者ID:heuritech,項目名稱:convnets-keras,代碼行數:58,代碼來源:convnets.py

示例14: alexnet_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import ZeroPadding2D [as 別名]
def alexnet_model(img_shape=(224, 224, 3), n_classes=10, l2_reg=0.,
	weights=None):

	# Initialize model
	alexnet = Sequential()

	# Layer 1
	alexnet.add(Conv2D(96, (11, 11), input_shape=img_shape,
		padding='same', kernel_regularizer=l2(l2_reg)))
	alexnet.add(BatchNormalization())
	alexnet.add(Activation('relu'))
	alexnet.add(MaxPooling2D(pool_size=(2, 2)))

	# Layer 2
	alexnet.add(Conv2D(256, (5, 5), padding='same'))
	alexnet.add(BatchNormalization())
	alexnet.add(Activation('relu'))
	alexnet.add(MaxPooling2D(pool_size=(2, 2)))

	# Layer 3
	alexnet.add(ZeroPadding2D((1, 1)))
	alexnet.add(Conv2D(512, (3, 3), padding='same'))
	alexnet.add(BatchNormalization())
	alexnet.add(Activation('relu'))
	alexnet.add(MaxPooling2D(pool_size=(2, 2)))

	# Layer 4
	alexnet.add(ZeroPadding2D((1, 1)))
	alexnet.add(Conv2D(1024, (3, 3), padding='same'))
	alexnet.add(BatchNormalization())
	alexnet.add(Activation('relu'))

	# Layer 5
	alexnet.add(ZeroPadding2D((1, 1)))
	alexnet.add(Conv2D(1024, (3, 3), padding='same'))
	alexnet.add(BatchNormalization())
	alexnet.add(Activation('relu'))
	alexnet.add(MaxPooling2D(pool_size=(2, 2)))

	# Layer 6
	alexnet.add(Flatten())
	alexnet.add(Dense(3072))
	alexnet.add(BatchNormalization())
	alexnet.add(Activation('relu'))
	alexnet.add(Dropout(0.5))

	# Layer 7
	alexnet.add(Dense(4096))
	alexnet.add(BatchNormalization())
	alexnet.add(Activation('relu'))
	alexnet.add(Dropout(0.5))

	# Layer 8
	alexnet.add(Dense(n_classes))
	alexnet.add(BatchNormalization())
	alexnet.add(Activation('softmax'))

	if weights is not None:
		alexnet.load_weights(weights)

	return alexnet 
開發者ID:eweill,項目名稱:keras-deepcv,代碼行數:63,代碼來源:alexnet.py

示例15: vgg_16

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import ZeroPadding2D [as 別名]
def vgg_16(weights_path=None):
    model = Sequential()
    model.add(ZeroPadding2D((1, 1), input_shape=(3, 224, 224)))
    model.add(Convolution2D(64, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(64, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2, 2), strides=(2, 2)))

    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(128, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(128, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2, 2), strides=(2, 2)))

    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2, 2), strides=(2, 2)))

    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2, 2), strides=(2, 2)))

    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1, 1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2, 2), strides=(2, 2)))

    model.add(Flatten())
    model.add(Dense(4096, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(4096, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1000, activation='softmax'))

    if weights_path:
        model.load_weights(weights_path)

    return model 
開發者ID:imatge-upc,項目名稱:detection-2016-nipsws,代碼行數:51,代碼來源:features.py


注:本文中的keras.layers.convolutional.ZeroPadding2D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。