當前位置: 首頁>>代碼示例>>Python>>正文


Python convolutional.UpSampling3D方法代碼示例

本文整理匯總了Python中keras.layers.convolutional.UpSampling3D方法的典型用法代碼示例。如果您正苦於以下問題:Python convolutional.UpSampling3D方法的具體用法?Python convolutional.UpSampling3D怎麽用?Python convolutional.UpSampling3D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers.convolutional的用法示例。


在下文中一共展示了convolutional.UpSampling3D方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fUpSample

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import UpSampling3D [as 別名]
def fUpSample(up_in, factor, method='repeat'):
    factor = int(np.round(1 / factor))
    if method == 'repeat':
        up_out = UpSampling3D(size=(factor, factor, factor), data_format='channels_first')(up_in)
        #else:  use inteporlation
        #up_out = scaling.fscalingLayer3D(up_in, factor, [up_in._keras_shape[2],up_in._keras_shape[3],up_in._keras_shape[4]])
    return up_out 
開發者ID:thomaskuestner,項目名稱:CNNArt,代碼行數:9,代碼來源:MSnetworks.py

示例2: build

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import UpSampling3D [as 別名]
def build(self, img1, img2):
        '''
            img1, img2, flow : tensor of shape [batch, X, Y, Z, C]
        '''
        concatImgs = tf.concat([img1, img2], 4, 'concatImgs')

        conv1 = convolveLeakyReLU(
            'conv1',   concatImgs, self.encoders[0],     3, 2)  # 64 * 64 * 64
        conv2 = convolveLeakyReLU(
            'conv2',   conv1,      self.encoders[1],   3, 2)  # 32 * 32 * 32
        conv3 = convolveLeakyReLU(
            'conv3',   conv2,      self.encoders[2],   3, 2)  # 16 * 16 * 16
        conv4 = convolveLeakyReLU(
            'conv4',   conv3,      self.encoders[3],   3, 2)  # 8 * 8 * 8

        net = convolveLeakyReLU('decode4', conv4, self.decoders[0], 3, 1)
        net = tf.concat([UpSampling3D()(net), conv3], axis=-1)
        net = convolveLeakyReLU('decode3',   net, self.decoders[1], 3, 1)
        net = tf.concat([UpSampling3D()(net), conv2], axis=-1)
        net = convolveLeakyReLU('decode2',   net, self.decoders[2], 3, 1)
        net = tf.concat([UpSampling3D()(net), conv1], axis=-1)
        net = convolveLeakyReLU('decode1',   net, self.decoders[3], 3, 1)
        net = convolveLeakyReLU('decode1_1', net, self.decoders[4], 3, 1)
        net = tf.concat([UpSampling3D()(net), concatImgs], axis=-1)
        net = convolveLeakyReLU('decode0',   net, self.decoders[5], 3, 1)
        if len(self.decoders) == 8:
            net = convolveLeakyReLU('decode0_1', net, self.decoders[6], 3, 1)
        net = convolve(
            'flow', net, self.decoders[-1], 3, 1, weights_init=normal(stddev=1e-5))
        return {
            'flow': net * self.flow_multiplier
        } 
開發者ID:microsoft,項目名稱:Recursive-Cascaded-Networks,代碼行數:34,代碼來源:base_networks.py

示例3: test_upsampling_3d

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import UpSampling3D [as 別名]
def test_upsampling_3d():
    num_samples = 2
    stack_size = 2
    input_len_dim1 = 10
    input_len_dim2 = 11
    input_len_dim3 = 12

    for data_format in ['channels_first', 'channels_last']:
        if data_format == 'channels_first':
            inputs = np.random.rand(num_samples,
                                    stack_size,
                                    input_len_dim1, input_len_dim2, input_len_dim3)
        else:  # tf
            inputs = np.random.rand(num_samples,
                                    input_len_dim1, input_len_dim2, input_len_dim3,
                                    stack_size)

        # basic test
        layer_test(convolutional.UpSampling3D,
                   kwargs={'size': (2, 2, 2), 'data_format': data_format},
                   input_shape=inputs.shape)

        for length_dim1 in [2, 3]:
            for length_dim2 in [2]:
                for length_dim3 in [3]:
                    layer = convolutional.UpSampling3D(
                        size=(length_dim1, length_dim2, length_dim3),
                        data_format=data_format)
                    layer.build(inputs.shape)
                    outputs = layer(K.variable(inputs))
                    np_output = K.eval(outputs)
                    if data_format == 'channels_first':
                        assert np_output.shape[2] == length_dim1 * input_len_dim1
                        assert np_output.shape[3] == length_dim2 * input_len_dim2
                        assert np_output.shape[4] == length_dim3 * input_len_dim3
                    else:  # tf
                        assert np_output.shape[1] == length_dim1 * input_len_dim1
                        assert np_output.shape[2] == length_dim2 * input_len_dim2
                        assert np_output.shape[3] == length_dim3 * input_len_dim3

                    # compare with numpy
                    if data_format == 'channels_first':
                        expected_out = np.repeat(inputs, length_dim1, axis=2)
                        expected_out = np.repeat(expected_out, length_dim2, axis=3)
                        expected_out = np.repeat(expected_out, length_dim3, axis=4)
                    else:  # tf
                        expected_out = np.repeat(inputs, length_dim1, axis=1)
                        expected_out = np.repeat(expected_out, length_dim2, axis=2)
                        expected_out = np.repeat(expected_out, length_dim3, axis=3)

                    assert_allclose(np_output, expected_out) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:53,代碼來源:convolutional_test.py

示例4: unet_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import UpSampling3D [as 別名]
def unet_model():
    
    inputs = Input(shape=(1, max_slices, img_size, img_size))
    conv1 = Convolution3D(width, 3, 3, 3, activation = 'relu', border_mode='same')(inputs)
    conv1 = BatchNormalization(axis = 1)(conv1)
    conv1 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv1)
    conv1 = BatchNormalization(axis = 1)(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2), strides = (2, 2, 2), border_mode='same')(conv1)
    
    conv2 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(pool1)
    conv2 = BatchNormalization(axis = 1)(conv2)
    conv2 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv2)
    conv2 = BatchNormalization(axis = 1)(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2), strides = (2, 2, 2), border_mode='same')(conv2)

    conv3 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(pool2)
    conv3 = BatchNormalization(axis = 1)(conv3)
    conv3 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv3)
    conv3 = BatchNormalization(axis = 1)(conv3)
    pool3 = MaxPooling3D(pool_size=(2, 2, 2), strides = (2, 2, 2), border_mode='same')(conv3)
    
    conv4 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(pool3)
    conv4 = BatchNormalization(axis = 1)(conv4)
    conv4 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv4)
    conv4 = BatchNormalization(axis = 1)(conv4)
    conv4 = Convolution3D(width*16, 3, 3, 3, activation = 'relu', border_mode='same')(conv4)
    conv4 = BatchNormalization(axis = 1)(conv4)

    up5 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv3], mode='concat', concat_axis=1)
    conv5 = SpatialDropout3D(dropout_rate)(up5)
    conv5 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv5)
    conv5 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv5)
    
    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv5), conv2], mode='concat', concat_axis=1)
    conv6 = SpatialDropout3D(dropout_rate)(up6)
    conv6 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv6)
    conv6 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv6)

    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)
    conv7 = SpatialDropout3D(dropout_rate)(up7)
    conv7 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv7)
    conv7 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv7)
    conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(conv7)

    model = Model(input=inputs, output=conv8)
    model.compile(optimizer=Adam(lr=1e-5), 
                  loss=dice_coef_loss, metrics=[dice_coef])

    return model 
開發者ID:Wrosinski,項目名稱:Kaggle-DSB,代碼行數:51,代碼來源:3DUNet_train_generator.py


注:本文中的keras.layers.convolutional.UpSampling3D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。