當前位置: 首頁>>代碼示例>>Python>>正文


Python convolutional.MaxPooling1D方法代碼示例

本文整理匯總了Python中keras.layers.convolutional.MaxPooling1D方法的典型用法代碼示例。如果您正苦於以下問題:Python convolutional.MaxPooling1D方法的具體用法?Python convolutional.MaxPooling1D怎麽用?Python convolutional.MaxPooling1D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers.convolutional的用法示例。


在下文中一共展示了convolutional.MaxPooling1D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 別名]
def create(self):
        self.textual_embedding(self, mask_zero=False)
        self.add(Convolution1D(
            nb_filter=self._config.language_cnn_filters,
            filter_length=self._config.language_cnn_filter_length,
            border_mode='valid',
            activation=self._config.language_cnn_activation,
            subsample_length=1))
        #self.add(MaxPooling1D(pool_length=self._config.language_max_pool_length))
        self.add(self._config.recurrent_encoder(
            self._config.hidden_state_dim, 
            return_sequences=False,
            go_backwards=False))
        self.deep_mlp()
        self.add(Dense(self._config.output_dim))
        self.add(Activation('softmax')) 
開發者ID:mateuszmalinowski,項目名稱:visual_turing_test-tutorial,代碼行數:18,代碼來源:model_zoo.py

示例2: cnn_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 別名]
def cnn_model(input_shape, hidden = 256, targets = 1, learn_rate = 1e-4):
    model = Sequential()
    model.add(Convolution1D(input_shape = input_shape, nb_filter = 64, filter_length = 3, border_mode = 'same', activation = 'relu'))
    model.add(MaxPooling1D(pool_length = 3))
    model.add(Bidirectional(LSTM(hidden), merge_mode = 'concat'))
    model.add(Activation('tanh'))
    model.add(Dropout(0.5))
    model.add(Dense(targets))
    if multiclass:
        model.add(Activation('softmax'))
        model.compile(loss='categorical_crossentropy', 
                  optimizer=Adam(lr=learn_rate, beta_1 =.5 ), metrics=['categorical_accuracy'])
    else:
        model.add(Activation ('sigmoid'))
        model.compile(loss='binary_crossentropy', 
                  optimizer=Adam(lr=learn_rate, beta_1 =.5 ), metrics=['accuracy'])
    return (model) 
開發者ID:illidanlab,項目名稱:urgent-care-comparative,代碼行數:19,代碼來源:deep_models.py

示例3: hierarchical_cnn

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 別名]
def hierarchical_cnn (input_shape, aux_shape, targets = 1, hidden = 256, multiclass = False, learn_rate=1e-4):
    x = Input(shape = input_shape, name = 'x')
    xx = Convolution1D(nb_filter = 64, filter_length = 3, border_mode = 'same', activation = 'relu') (x)
    xx = MaxPooling1D(pool_length = 3) (xx)
    
    xx = Bidirectional(LSTM (256, activation = 'relu'), merge_mode = 'concat') (xx)
    xx = Dropout(0.5)(xx)
    
    dx = Input(shape = aux_shape, name = 'aux')

    xx = concatenate([xx, dx])
    if multiclass:
        y = Dense(targets, activation = 'softmax') (xx)
        model = Model(inputs = [x, dx], outputs = [y])
        model.compile (loss = 'categorical_crossentropy', optimizer = Adam(lr = learn_rate), metrics = ['categorical_accuracy'])
    else:
        y = Dense(targets, activation = 'sigmoid') (xx)
        model = Model(inputs = [x, dx], outputs = [y])
        model.compile (loss = 'binary_crossentropy', optimizer = Adam(lr = learn_rate), metrics = ['accuracy'])
    return (model) 
開發者ID:illidanlab,項目名稱:urgent-care-comparative,代碼行數:22,代碼來源:deep_models.py

示例4: m_rec

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 別名]
def m_rec(num_classes=10):
    from keras.layers.recurrent import LSTM
    print('Using Model LSTM 1')
    m = Sequential()
    m.add(Conv1D(64,
                 input_shape=[AUDIO_LENGTH, 1],
                 kernel_size=80,
                 strides=4,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))
    m.add(LSTM(32,
               kernel_regularizer=regularizers.l2(l=0.0001),
               return_sequences=True,
               dropout=0.2))
    m.add(LSTM(32,
               kernel_regularizer=regularizers.l2(l=0.0001),
               return_sequences=False,
               dropout=0.2))
    m.add(Dense(32))
    m.add(Dense(num_classes, activation='softmax'))
    return m 
開發者ID:philipperemy,項目名稱:very-deep-convnets-raw-waveforms,代碼行數:27,代碼來源:models.py

示例5: embeddingCNN

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 別名]
def embeddingCNN(shape, clusters=2, embedLayer=200, middle = 100):
    top_words = 2001
    lossType = 'binary_crossentropy' if clusters == 2 else 'categorical_crossentropy'
    model = Sequential()
    model.add(Embedding(top_words, embedLayer, input_length=shape))
    model.add(Convolution1D(nb_filter=embedLayer, filter_length=3, border_mode='same', activation='relu'))
    model.add(MaxPooling1D(pool_length=2))
    model.add(Flatten())
    model.add(Dense(middle, activation='relu'))
    model.add(Dense(clusters, activation='sigmoid'))
    model.compile(loss=lossType, optimizer='adam', metrics=['accuracy'])
    return model 
開發者ID:WayneDW,項目名稱:Sentiment-Analysis-in-Event-Driven-Stock-Price-Movement-Prediction,代碼行數:14,代碼來源:model_keras_cnn_rnn.py

示例6: test_maxpooling_1d

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 別名]
def test_maxpooling_1d():
    for padding in ['valid', 'same']:
        for stride in [1, 2]:
            layer_test(convolutional.MaxPooling1D,
                       kwargs={'strides': stride,
                               'padding': padding},
                       input_shape=(3, 5, 4)) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:9,代碼來源:convolutional_test.py

示例7: model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 別名]
def model(X_train, X_test, y_train, y_test, maxlen, max_features):
    embedding_size = 300
    pool_length = 4
    lstm_output_size = 100
    batch_size = 200
    nb_epoch = 1

    model = Sequential()
    model.add(Embedding(max_features, embedding_size, input_length=maxlen))
    model.add(Dropout({{uniform(0, 1)}}))
    # Note that we use unnamed parameters here, which is bad style, but is used here
    # to demonstrate that it works. Always prefer named parameters.
    model.add(Convolution1D({{choice([64, 128])}},
                            {{choice([6, 8])}},
                            border_mode='valid',
                            activation='relu',
                            subsample_length=1))
    model.add(MaxPooling1D(pool_length=pool_length))
    model.add(LSTM(lstm_output_size))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))

    model.compile(loss='binary_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy'])

    print('Train...')
    model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch,
              validation_data=(X_test, y_test))
    score, acc = model.evaluate(X_test, y_test, batch_size=batch_size)

    print('Test score:', score)
    print('Test accuracy:', acc)
    return {'loss': -acc, 'status': STATUS_OK, 'model': model} 
開發者ID:maxpumperla,項目名稱:hyperas,代碼行數:36,代碼來源:cnn_lstm.py

示例8: define_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 別名]
def define_model(self, length, vocab_size):

        embedding_size = 100
        cnn_filter_size = 32

        inputs1 = Input(shape=(length,))
        embedding1 = Embedding(vocab_size, embedding_size)(inputs1)
        conv1 = Conv1D(filters=cnn_filter_size, kernel_size=4, activation='relu')(
            embedding1)
        drop1 = Dropout(0.5)(conv1)
        pool1 = MaxPooling1D(pool_size=2)(drop1)
        flat1 = Flatten()(pool1)

        inputs2 = Input(shape=(length,))
        embedding2 = Embedding(vocab_size, embedding_size)(inputs2)
        conv2 = Conv1D(filters=cnn_filter_size, kernel_size=6, activation='relu')(
            embedding2)
        drop2 = Dropout(0.5)(conv2)
        pool2 = MaxPooling1D(pool_size=2)(drop2)
        flat2 = Flatten()(pool2)

        inputs3 = Input(shape=(length,))
        embedding3 = Embedding(vocab_size, embedding_size)(inputs3)
        conv3 = Conv1D(filters=cnn_filter_size, kernel_size=8, activation='relu')(
            embedding3)
        drop3 = Dropout(0.5)(conv3)
        pool3 = MaxPooling1D(pool_size=2)(drop3)
        flat3 = Flatten()(pool3)

        merged = concatenate([flat1, flat2, flat3])
        # interpretation
        dense1 = Dense(10, activation='relu')(merged)

        outputs = Dense(units=len(self.labels), activation='softmax')(dense1)

        model = Model(inputs=[inputs1, inputs2, inputs3], outputs=outputs)
        # compile
        model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
        # summarize
        print(model.summary())
        return model 
開發者ID:chen0040,項目名稱:keras-english-resume-parser-and-analyzer,代碼行數:43,代碼來源:cnn.py

示例9: m3

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 別名]
def m3(num_classes=10):
    print('Using Model M3')
    m = Sequential()
    m.add(Conv1D(256,
                 input_shape=[AUDIO_LENGTH, 1],
                 kernel_size=80,
                 strides=4,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))
    m.add(Conv1D(256,
                 kernel_size=3,
                 strides=1,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))

    m.add(MaxPooling1D(pool_size=4, strides=None))
    m.add(Lambda(lambda x: K.mean(x, axis=1))) # Same as GAP for 1D Conv Layer
    m.add(Dense(num_classes, activation='softmax'))
    return m 
開發者ID:philipperemy,項目名稱:very-deep-convnets-raw-waveforms,代碼行數:28,代碼來源:models.py

示例10: model_cnn

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 別名]
def model_cnn(vocab, weights, dataPath, batchn, epoch):
    global LEN
    global DIM
    global BATCH
    testx, testy = build_dataset('%s%d'%(dataPath, 2528), vocab, weights=weights)
    testx = np.array(testx, dtype=np.float64)
    testy = np.array(testx, dtype=np.float64)
    model = Sequential()
    #model.add(Embedding(400001, 50, input_length=LEN, mask_zero=False,weights=[embedModel]))
    model.add(Conv1D(input_shape=(LEN, DIM), filters=32, kernel_size=30, padding='same', activation='relu'))
    model.add(MaxPooling1D(pool_size=2))
    model.add(Flatten())
    model.add(Dense(250, activation='softmax'))
    model.add(Dense(1, activation='softmax'))
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    print(model.summary())
    index = 0
    while True:
        data, result = build_dataset('%s%d'%(dataPath, index%2528), vocab, weights)
        for i in range(1, batchn):
            index += 1
            newData, newResult = build_dataset('%s%d'%(dataPath, index), vocab, weights)
            data.extend(newData)
            result.extend(newResult)
        model.fit(np.array(data, dtype=np.float64), np.array(result, dtype=np.float64), epochs=10, batch_size=BATCH, verbose=2, validation_data = (testx,testy))
        model.save('hotnews_c_%d_%d.h5'%(BATCH, index))
        predict = model.predict(testx)
        for i in range(testy.shape[0]):
            print(testy[i], predict[i])
        index += 1
        if index > epoch:
            return model 
開發者ID:moment-of-peace,項目名稱:EventForecast,代碼行數:34,代碼來源:rnn_text.py

示例11: Unet

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 別名]
def Unet(nClasses, optimizer=None, input_length=1800, nChannels=1):
    inputs = Input((input_length, nChannels))
    conv1 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
    conv1 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
    pool1 = MaxPooling1D(pool_size=2)(conv1)

    conv2 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
    conv2 = Dropout(0.2)(conv2)
    conv2 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
    pool2 = MaxPooling1D(pool_size=2)(conv2)
    
    conv3 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
    conv3 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
    pool3 = MaxPooling1D(pool_size=2)(conv3)

    conv4 = Conv1D(128, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
    conv4 = Dropout(0.5)(conv4)
    conv4 = Conv1D(128, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)

    up1 = Conv1D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling1D(size=2)(conv4))
    merge1 = concatenate([up1, conv3], axis=-1)
    conv5 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(merge1)
    conv5 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
    
    up2 = Conv1D(32, 2, activation='relu', padding='same', kernel_initializer = 'he_normal')(UpSampling1D(size=2)(conv5))
    merge2 = concatenate([up2, conv2], axis=-1)
    conv6 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer = 'he_normal')(merge2)
    conv6 = Dropout(0.2)(conv6)
    conv6 = Conv1D(32, 32, activation='relu', padding='same')(conv6)
    
    up3 = Conv1D(16, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling1D(size=2)(conv6))
    merge3 = concatenate([up3, conv1], axis=-1)
    conv7 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(merge3)
    conv7 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
    
    conv8 = Conv1D(nClasses, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
    conv8 = core.Reshape((nClasses, input_length))(conv8)
    conv8 = core.Permute((2, 1))(conv8)

    conv9 = core.Activation('softmax')(conv8)

    model = Model(inputs=inputs, outputs=conv9)
    if not optimizer is None:
        model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=['accuracy'])

    return model 
開發者ID:Aiwiscal,項目名稱:ECG_UNet,代碼行數:48,代碼來源:Unet.py

示例12: create_neural_network_rnn

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 別名]
def create_neural_network_rnn(self):
        """
        Create the Neural Network Model

        :return: Keras Modelh
        """

        model = Sequential()

        # we start off with an efficient embedding layer which maps
        # our vocab indices into embedding_dims dimensions
        model.add(Embedding(12,  # Number of Features from State Space
                            300,  # Vector Size
                            input_length=self.input_dim))

        # we add a Convolution1D, which will learn nb_filter
        # word group filters of size filter_length:
        model.add(Convolution1D(nb_filter=self.nb_filter,
                                filter_length=self.filter_length,
                                border_mode='valid',
                                activation='relu',
                                subsample_length=1))

        # we use standard max pooling (halving the output of the previous
        # layer):
        model.add(MaxPooling1D(pool_length=self.pool_length))
        model.add(Dropout(self.dropout))

        # We flatten the output of the conv layer,
        # so that we can add a vanilla dense layer:
        model.add(Flatten())

        # We add a vanilla hidden layer:
        model.add(Dense(self.neurons))
        model.add(Dropout(self.dropout))
        model.add(Activation('relu'))

        # We project onto a single unit output layer, and squash it with a
        # sigmoid:
        model.add(Dense(len(self.actions)))
        model.add(Activation('linear'))

        model.compile(loss='mse',
                      optimizer=Adadelta(lr=0.00025))

        print(model.summary())

        return model 
開發者ID:dandxy89,項目名稱:rf_helicopter,代碼行數:50,代碼來源:Q_Learning_Agent.py

示例13: m5

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 別名]
def m5(num_classes=10):
    print('Using Model M5')
    m = Sequential()
    m.add(Conv1D(128,
                 input_shape=[AUDIO_LENGTH, 1],
                 kernel_size=80,
                 strides=4,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))
    m.add(Conv1D(128,
                 kernel_size=3,
                 strides=1,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))
    m.add(Conv1D(256,
                 kernel_size=3,
                 strides=1,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))
    m.add(Conv1D(512,
                 kernel_size=3,
                 strides=1,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))
    m.add(Lambda(lambda x: K.mean(x, axis=1))) # Same as GAP for 1D Conv Layer
    m.add(Dense(num_classes, activation='softmax'))
    return m 
開發者ID:philipperemy,項目名稱:very-deep-convnets-raw-waveforms,代碼行數:45,代碼來源:models.py

示例14: m11

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 別名]
def m11(num_classes=10):
    print('Using Model M11')
    m = Sequential()
    m.add(Conv1D(64,
                 input_shape=[AUDIO_LENGTH, 1],
                 kernel_size=80,
                 strides=4,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))

    for i in range(2):
        m.add(Conv1D(64,
                     kernel_size=3,
                     strides=1,
                     padding='same',
                     kernel_initializer='glorot_uniform',
                     kernel_regularizer=regularizers.l2(l=0.0001)))
        m.add(BatchNormalization())
        m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))

    for i in range(2):
        m.add(Conv1D(128,
                     kernel_size=3,
                     strides=1,
                     padding='same',
                     kernel_initializer='glorot_uniform',
                     kernel_regularizer=regularizers.l2(l=0.0001)))
        m.add(BatchNormalization())
        m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))

    for i in range(3):
        m.add(Conv1D(256,
                     kernel_size=3,
                     strides=1,
                     padding='same',
                     kernel_initializer='glorot_uniform',
                     kernel_regularizer=regularizers.l2(l=0.0001)))
        m.add(BatchNormalization())
        m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))

    for i in range(2):
        m.add(Conv1D(512,
                     kernel_size=3,
                     strides=1,
                     padding='same',
                     kernel_initializer='glorot_uniform',
                     kernel_regularizer=regularizers.l2(l=0.0001)))
        m.add(BatchNormalization())
        m.add(Activation('relu'))

    m.add(Lambda(lambda x: K.mean(x, axis=1))) # Same as GAP for 1D Conv Layer
    m.add(Dense(num_classes, activation='softmax'))
    return m 
開發者ID:philipperemy,項目名稱:very-deep-convnets-raw-waveforms,代碼行數:62,代碼來源:models.py

示例15: m18

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 別名]
def m18(num_classes=10):
    print('Using Model M18')
    m = Sequential()
    m.add(Conv1D(64,
                 input_shape=[AUDIO_LENGTH, 1],
                 kernel_size=80,
                 strides=4,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))

    for i in range(4):
        m.add(Conv1D(64,
                     kernel_size=3,
                     strides=1,
                     padding='same',
                     kernel_initializer='glorot_uniform',
                     kernel_regularizer=regularizers.l2(l=0.0001)))
        m.add(BatchNormalization())
        m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))

    for i in range(4):
        m.add(Conv1D(128,
                     kernel_size=3,
                     strides=1,
                     padding='same',
                     kernel_initializer='glorot_uniform',
                     kernel_regularizer=regularizers.l2(l=0.0001)))
        m.add(BatchNormalization())
        m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))

    for i in range(4):
        m.add(Conv1D(256,
                     kernel_size=3,
                     strides=1,
                     padding='same',
                     kernel_initializer='glorot_uniform',
                     kernel_regularizer=regularizers.l2(l=0.0001)))
        m.add(BatchNormalization())
        m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))

    for i in range(4):
        m.add(Conv1D(512,
                     kernel_size=3,
                     strides=1,
                     padding='same',
                     kernel_initializer='glorot_uniform',
                     kernel_regularizer=regularizers.l2(l=0.0001)))
        m.add(BatchNormalization())
        m.add(Activation('relu'))

    m.add(Lambda(lambda x: K.mean(x, axis=1))) # Same as GAP for 1D Conv Layer
    m.add(Dense(num_classes, activation='softmax'))
    return m 
開發者ID:philipperemy,項目名稱:very-deep-convnets-raw-waveforms,代碼行數:62,代碼來源:models.py


注:本文中的keras.layers.convolutional.MaxPooling1D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。