當前位置: 首頁>>代碼示例>>Python>>正文


Python convolutional.Convolution2D方法代碼示例

本文整理匯總了Python中keras.layers.convolutional.Convolution2D方法的典型用法代碼示例。如果您正苦於以下問題:Python convolutional.Convolution2D方法的具體用法?Python convolutional.Convolution2D怎麽用?Python convolutional.Convolution2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers.convolutional的用法示例。


在下文中一共展示了convolutional.Convolution2D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution2D [as 別名]
def __init__(self, model_path=None):
        if model_path is not None:
            self.model = self.load_model(model_path)
        else:
            # VGG16 last conv features
            inputs = Input(shape=(7, 7, 512))
            x = Convolution2D(128, 1, 1)(inputs)
            x = Flatten()(x)

            # Cls head
            h_cls = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x)
            h_cls = Dropout(p=0.5)(h_cls)
            cls_head = Dense(20, activation='softmax', name='cls')(h_cls)

            # Reg head
            h_reg = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x)
            h_reg = Dropout(p=0.5)(h_reg)
            reg_head = Dense(4, activation='linear', name='reg')(h_reg)

            # Joint model
            self.model = Model(input=inputs, output=[cls_head, reg_head]) 
開發者ID:wiseodd,項目名稱:cnn-levelset,代碼行數:23,代碼來源:localizer.py

示例2: get_residual_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution2D [as 別名]
def get_residual_model(is_mnist=True, img_channels=1, img_rows=28, img_cols=28):
    model = keras.models.Sequential()
    first_layer_channel = 128
    if is_mnist: # size to be changed to 32,32
        model.add(ZeroPadding2D((2,2), input_shape=(img_channels, img_rows, img_cols))) # resize (28,28)-->(32,32)
        # the first conv 
        model.add(Convolution2D(first_layer_channel, 3, 3, border_mode='same'))
    else:
        model.add(Convolution2D(first_layer_channel, 3, 3, border_mode='same', input_shape=(img_channels, img_rows, img_cols)))

    model.add(Activation('relu'))
    # [residual-based Conv layers]
    residual_blocks = design_for_residual_blocks(num_channel_input=first_layer_channel)
    model.add(residual_blocks)
    model.add(BatchNormalization(axis=1))
    model.add(Activation('relu'))
    # [Classifier]    
    model.add(Flatten())
    model.add(Dense(nb_classes))
    model.add(Activation('softmax'))
    # [END]
    return model 
開發者ID:keunwoochoi,項目名稱:residual_block_keras,代碼行數:24,代碼來源:example.py

示例3: test_img_clf

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution2D [as 別名]
def test_img_clf(self):
        print('image classification data:')
        (X_train, y_train), (X_test, y_test) = get_test_data(nb_train=1000, nb_test=200, input_shape=(3, 32, 32),
                                                             classification=True, nb_class=2)
        print('X_train:', X_train.shape)
        print('X_test:', X_test.shape)
        print('y_train:', y_train.shape)
        print('y_test:', y_test.shape)

        y_train = to_categorical(y_train)
        y_test = to_categorical(y_test)

        model = Sequential()
        model.add(Convolution2D(32, 3, 32, 32))
        model.add(Activation('sigmoid'))
        model.add(Flatten())
        model.add(Dense(32, y_test.shape[-1]))
        model.add(Activation('softmax'))
        model.compile(loss='categorical_crossentropy', optimizer='sgd')
        history = model.fit(X_train, y_train, nb_epoch=12, batch_size=16, validation_data=(X_test, y_test), show_accuracy=True, verbose=2)
        self.assertTrue(history.history['val_acc'][-1] > 0.9) 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:23,代碼來源:test_tasks.py

示例4: buildmodel

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution2D [as 別名]
def buildmodel():
	print("Model building begins")

	model = Sequential()
	keras.initializers.RandomUniform(minval=-0.1, maxval=0.1, seed=None)

	S = Input(shape = (IMAGE_ROWS, IMAGE_COLS, IMAGE_CHANNELS, ), name = 'Input')
	h0 = Convolution2D(16, kernel_size = (8,8), strides = (4,4), activation = 'relu', kernel_initializer = 'random_uniform', bias_initializer = 'random_uniform')(S)
	h1 = Convolution2D(32, kernel_size = (4,4), strides = (2,2), activation = 'relu', kernel_initializer = 'random_uniform', bias_initializer = 'random_uniform')(h0)
	h2 = Flatten()(h1)
	h3 = Dense(256, activation = 'relu', kernel_initializer = 'random_uniform', bias_initializer = 'random_uniform') (h2)
	P = Dense(1, name = 'o_P', activation = 'sigmoid', kernel_initializer = 'random_uniform', bias_initializer = 'random_uniform') (h3)
	V = Dense(1, name = 'o_V', kernel_initializer = 'random_uniform', bias_initializer = 'random_uniform') (h3)

	model = Model(inputs = S, outputs = [P,V])
	rms = RMSprop(lr = LEARNING_RATE, rho = 0.99, epsilon = 0.1)
	model.compile(loss = {'o_P': logloss, 'o_V': sumofsquares}, loss_weights = {'o_P': 1., 'o_V' : 0.5}, optimizer = rms)
	return model

#function to preprocess an image before giving as input to the neural network 
開發者ID:shalabhsingh,項目名稱:A3C_Keras_FlappyBird,代碼行數:22,代碼來源:train_network.py

示例5: dc_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution2D [as 別名]
def dc_model(self):

        model = Sequential()

        model.add(Dense(256*8*8,activation=LeakyReLU(0.2), input_dim=self.LATENT_SPACE_SIZE))
        model.add(BatchNormalization())

        model.add(Reshape((8, 8, 256)))
        model.add(UpSampling2D())

        model.add(Convolution2D(128, 5, 5, border_mode='same',activation=LeakyReLU(0.2)))
        model.add(BatchNormalization())
        model.add(UpSampling2D())

        model.add(Convolution2D(64, 5, 5, border_mode='same',activation=LeakyReLU(0.2)))
        model.add(BatchNormalization())
        model.add(UpSampling2D())

        model.add(Convolution2D(self.C, 5, 5, border_mode='same', activation='tanh'))
        
        return model 
開發者ID:PacktPublishing,項目名稱:Generative-Adversarial-Networks-Cookbook,代碼行數:23,代碼來源:generator.py

示例6: model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution2D [as 別名]
def model(self):
        input_layer = Input(self.SHAPE)

        up_layer_1 = Convolution2D(64, kernel_size=4, strides=2, padding='same',activation=LeakyReLU(alpha=0.2))(input_layer)

        up_layer_2 = Convolution2D(64*2, kernel_size=4, strides=2, padding='same',activation=LeakyReLU(alpha=0.2))(up_layer_1)
        norm_layer_1 = InstanceNormalization()(up_layer_2)

        up_layer_3 = Convolution2D(64*4, kernel_size=4, strides=2, padding='same',activation=LeakyReLU(alpha=0.2))(norm_layer_1)
        norm_layer_2 = InstanceNormalization()(up_layer_3)

        up_layer_4 = Convolution2D(64*8, kernel_size=4, strides=2, padding='same',activation=LeakyReLU(alpha=0.2))(norm_layer_2)
        norm_layer_3 =InstanceNormalization()(up_layer_4)

        output_layer = Convolution2D(1, kernel_size=4, strides=1, padding='same')(norm_layer_3)
        output_layer_1 = Flatten()(output_layer)
        output_layer_2 = Dense(1, activation='sigmoid')(output_layer_1)
        
        return Model(input_layer,output_layer_2) 
開發者ID:PacktPublishing,項目名稱:Generative-Adversarial-Networks-Cookbook,代碼行數:21,代碼來源:discriminator.py

示例7: model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution2D [as 別名]
def model(self):


        input_A = Input(shape=self.SHAPE)
        input_B = Input(shape=self.SHAPE)
        input_layer = Concatenate(axis=-1)([input_A, input_B])

        up_layer_1 = Convolution2D(self.FS, kernel_size=4, strides=2, padding='same',activation=LeakyReLU(alpha=0.2))(input_layer)

        up_layer_2 = Convolution2D(self.FS*2, kernel_size=4, strides=2, padding='same',activation=LeakyReLU(alpha=0.2))(up_layer_1)
        leaky_layer_2 =  BatchNormalization(momentum=0.8)(up_layer_2)

        up_layer_3 = Convolution2D(self.FS*4, kernel_size=4, strides=2, padding='same',activation=LeakyReLU(alpha=0.2))(leaky_layer_2)
        leaky_layer_3 =  BatchNormalization(momentum=0.8)(up_layer_3)

        up_layer_4 = Convolution2D(self.FS*8, kernel_size=4, strides=2, padding='same',activation=LeakyReLU(alpha=0.2))(leaky_layer_3)
        leaky_layer_4 = BatchNormalization(momentum=0.8)(up_layer_4)

        output_layer = Convolution2D(1, kernel_size=4, strides=1, padding='same')(leaky_layer_4)
        
        return Model([input_A, input_B],output_layer) 
開發者ID:PacktPublishing,項目名稱:Generative-Adversarial-Networks-Cookbook,代碼行數:23,代碼來源:discriminator.py

示例8: build_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution2D [as 別名]
def build_model(self):

        model = Sequential()
        model.add(Convolution2D(
            16, 8, 8, input_shape=(self.num_frames,) + self.frame_dim,
            subsample=(4, 4), activation="relu", init="he_uniform"
        ))
        model.add(Convolution2D(
            16, 4, 4, subsample=(2, 2), activation="relu", init="he_uniform"
        ))
        model.add(Convolution2D(
            32, 3, 3, subsample=(1, 1), activation="relu", init="he_uniform"
        ))
        model.add(Flatten())
        model.add(Dense(
            512, activation="relu", init="he_uniform"
        ))
        model.add(Dense(
            self.num_actions, activation="linear", init="he_uniform"
        ))

        model.compile(loss=self.q_loss, optimizer=self.optimizer)

        self.model = model 
開發者ID:ntasfi,項目名稱:PyGame-Learning-Environment,代碼行數:26,代碼來源:example_support.py

示例9: conv_block

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution2D [as 別名]
def conv_block(ip, nb_filter, dropout_rate=None, weight_decay=1E-4):
    ''' Apply BatchNorm, Relu 3x3, Conv2D, optional dropout

    Args:
        ip: Input keras tensor
        nb_filter: number of filters
        dropout_rate: dropout rate
        weight_decay: weight decay factor

    Returns: keras tensor with batch_norm, relu and convolution2d added

    '''

    x = Activation('relu')(ip)
    x = Convolution2D(nb_filter, 3, 3, init="he_uniform", border_mode="same", bias=False,
                      W_regularizer=l2(weight_decay))(x)
    if dropout_rate:
        x = Dropout(dropout_rate)(x)

    return x 
開發者ID:cvjena,項目名稱:semantic-embeddings,代碼行數:22,代碼來源:densenet_fast.py

示例10: transition_block

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution2D [as 別名]
def transition_block(ip, nb_filter, dropout_rate=None, weight_decay=1E-4):
    ''' Apply BatchNorm, Relu 1x1, Conv2D, optional dropout and Maxpooling2D

    Args:
        ip: keras tensor
        nb_filter: number of filters
        dropout_rate: dropout rate
        weight_decay: weight decay factor

    Returns: keras tensor, after applying batch_norm, relu-conv, dropout, maxpool

    '''

    concat_axis = 1 if K.image_dim_ordering() == "th" else -1

    x = Convolution2D(nb_filter, 1, 1, init="he_uniform", border_mode="same", bias=False,
                      W_regularizer=l2(weight_decay))(ip)
    if dropout_rate:
        x = Dropout(dropout_rate)(x)
    x = AveragePooling2D((2, 2), strides=(2, 2))(x)

    x = BatchNormalization(mode=0, axis=concat_axis, gamma_regularizer=l2(weight_decay),
                           beta_regularizer=l2(weight_decay))(x)

    return x 
開發者ID:cvjena,項目名稱:semantic-embeddings,代碼行數:27,代碼來源:densenet_fast.py

示例11: expand_conv

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution2D [as 別名]
def expand_conv(init, base, k, strides=(1, 1)):
    x = Convolution2D(base * k, (3, 3), padding='same', strides=strides, kernel_initializer='he_normal',
                      use_bias=False)(init)

    channel_axis = 1 if K.image_data_format() == "channels_first" else -1

    x = BatchNormalization(axis=channel_axis, momentum=0.1, epsilon=1e-5, gamma_initializer='uniform')(x)
    x = Activation('relu')(x)

    x = Convolution2D(base * k, (3, 3), padding='same', kernel_initializer='he_normal',
                      use_bias=False)(x)

    skip = Convolution2D(base * k, (1, 1), padding='same', strides=strides, kernel_initializer='he_normal',
                      use_bias=False)(init)

    m = Add()([x, skip])

    return m 
開發者ID:cvjena,項目名稱:semantic-embeddings,代碼行數:20,代碼來源:wide_residual_network.py

示例12: conv2d_bn

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution2D [as 別名]
def conv2d_bn(x, nb_filter, nb_row, nb_col,
              border_mode='same', subsample=(1, 1), bias=False):
    """
    Utility function to apply conv + BN. 
    (Slightly modified from https://github.com/fchollet/keras/blob/master/keras/applications/inception_v3.py)
    """
    if K.image_dim_ordering() == "th":
        channel_axis = 1
    else:
        channel_axis = -1
    x = Convolution2D(nb_filter, nb_row, nb_col,
                      subsample=subsample,
                      border_mode=border_mode,
                      bias=bias)(x)
    x = BatchNormalization(axis=channel_axis)(x)
    x = Activation('relu')(x)
    return x 
開發者ID:filonenkoa,項目名稱:cnn_evaluation_smoke,代碼行數:19,代碼來源:inception_v4.py

示例13: conv_block

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution2D [as 別名]
def conv_block(input, nb_filter, dropout_rate=None, weight_decay=1E-4):
    ''' Apply BatchNorm, Relu 3x3, Conv2D, optional dropout
    Args:
        input: Input keras tensor
        nb_filter: number of filters
        dropout_rate: dropout rate
        weight_decay: weight decay factor
    Returns: keras tensor with batch_norm, relu and convolution2d added
    '''

    x = Activation('relu')(input)
    x = Convolution2D(nb_filter, (3, 3), kernel_initializer="he_uniform", padding="same", use_bias=False,
                      kernel_regularizer=l2(weight_decay))(x)
    if dropout_rate is not None:
        x = Dropout(dropout_rate)(x)

    return x 
開發者ID:Kexiii,項目名稱:DenseNet-Cifar10,代碼行數:19,代碼來源:DenseNet.py

示例14: transition_block

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution2D [as 別名]
def transition_block(input, nb_filter, dropout_rate=None, weight_decay=1E-4):
    ''' Apply BatchNorm, Relu 1x1, Conv2D, optional dropout and Maxpooling2D
    Args:
        input: keras tensor
        nb_filter: number of filters
        dropout_rate: dropout rate
        weight_decay: weight decay factor
    Returns: keras tensor, after applying batch_norm, relu-conv, dropout, maxpool
    '''

    concat_axis = 1 if K.image_dim_ordering() == "th" else -1

    x = Convolution2D(nb_filter, (1, 1), kernel_initializer="he_uniform", padding="same", use_bias=False,
                      kernel_regularizer=l2(weight_decay))(input)
    if dropout_rate is not None:
        x = Dropout(dropout_rate)(x)
    x = AveragePooling2D((2, 2), strides=(2, 2))(x)

    x = BatchNormalization(axis=concat_axis, gamma_regularizer=l2(weight_decay),
                           beta_regularizer=l2(weight_decay))(x)

    return x 
開發者ID:Kexiii,項目名稱:DenseNet-Cifar10,代碼行數:24,代碼來源:DenseNet.py

示例15: cnn

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution2D [as 別名]
def cnn(trn_set, tst_set):
    trn_x, trn_y = trn_set
    trn_y = np.squeeze(trn_y, axis=2)
    tst_x, tst_y = tst_set
    tst_y = np.squeeze(tst_y, axis=2)

    model = Sequential()

    model.add(Convolution2D(2, 5, 5, activation='sigmoid', input_shape=(1, 28, 28)))
    model.add(MaxPooling2D(pool_size=(3, 3)))
    model.add(Flatten())
    model.add(Dense(10, activation='softmax'))

    model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.1))
    return model, trn_x, trn_y, tst_x, tst_y

################################################################################ 
開發者ID:integeruser,項目名稱:MNIST-cnn,代碼行數:19,代碼來源:train_and_save.py


注:本文中的keras.layers.convolutional.Convolution2D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。