當前位置: 首頁>>代碼示例>>Python>>正文


Python convolutional.Convolution1D方法代碼示例

本文整理匯總了Python中keras.layers.convolutional.Convolution1D方法的典型用法代碼示例。如果您正苦於以下問題:Python convolutional.Convolution1D方法的具體用法?Python convolutional.Convolution1D怎麽用?Python convolutional.Convolution1D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers.convolutional的用法示例。


在下文中一共展示了convolutional.Convolution1D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: cnn_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution1D [as 別名]
def cnn_model(input_shape, hidden = 256, targets = 1, learn_rate = 1e-4):
    model = Sequential()
    model.add(Convolution1D(input_shape = input_shape, nb_filter = 64, filter_length = 3, border_mode = 'same', activation = 'relu'))
    model.add(MaxPooling1D(pool_length = 3))
    model.add(Bidirectional(LSTM(hidden), merge_mode = 'concat'))
    model.add(Activation('tanh'))
    model.add(Dropout(0.5))
    model.add(Dense(targets))
    if multiclass:
        model.add(Activation('softmax'))
        model.compile(loss='categorical_crossentropy', 
                  optimizer=Adam(lr=learn_rate, beta_1 =.5 ), metrics=['categorical_accuracy'])
    else:
        model.add(Activation ('sigmoid'))
        model.compile(loss='binary_crossentropy', 
                  optimizer=Adam(lr=learn_rate, beta_1 =.5 ), metrics=['accuracy'])
    return (model) 
開發者ID:illidanlab,項目名稱:urgent-care-comparative,代碼行數:19,代碼來源:deep_models.py

示例2: create

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution1D [as 別名]
def create(self):
        self.textual_embedding(self, mask_zero=False)
        self.add(Convolution1D(
            nb_filter=self._config.language_cnn_filters,
            filter_length=self._config.language_cnn_filter_length,
            border_mode='valid',
            activation=self._config.language_cnn_activation,
            subsample_length=1))
        #self.add(MaxPooling1D(pool_length=self._config.language_max_pool_length))
        self.add(self._config.recurrent_encoder(
            self._config.hidden_state_dim, 
            return_sequences=False,
            go_backwards=False))
        self.deep_mlp()
        self.add(Dense(self._config.output_dim))
        self.add(Activation('softmax')) 
開發者ID:mateuszmalinowski,項目名稱:visual_turing_test-tutorial,代碼行數:18,代碼來源:model_zoo.py

示例3: hierarchical_cnn

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution1D [as 別名]
def hierarchical_cnn (input_shape, aux_shape, targets = 1, hidden = 256, multiclass = False, learn_rate=1e-4):
    x = Input(shape = input_shape, name = 'x')
    xx = Convolution1D(nb_filter = 64, filter_length = 3, border_mode = 'same', activation = 'relu') (x)
    xx = MaxPooling1D(pool_length = 3) (xx)
    
    xx = Bidirectional(LSTM (256, activation = 'relu'), merge_mode = 'concat') (xx)
    xx = Dropout(0.5)(xx)
    
    dx = Input(shape = aux_shape, name = 'aux')

    xx = concatenate([xx, dx])
    if multiclass:
        y = Dense(targets, activation = 'softmax') (xx)
        model = Model(inputs = [x, dx], outputs = [y])
        model.compile (loss = 'categorical_crossentropy', optimizer = Adam(lr = learn_rate), metrics = ['categorical_accuracy'])
    else:
        y = Dense(targets, activation = 'sigmoid') (xx)
        model = Model(inputs = [x, dx], outputs = [y])
        model.compile (loss = 'binary_crossentropy', optimizer = Adam(lr = learn_rate), metrics = ['accuracy'])
    return (model) 
開發者ID:illidanlab,項目名稱:urgent-care-comparative,代碼行數:22,代碼來源:deep_models.py

示例4: _buildEncoder

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution1D [as 別名]
def _buildEncoder(self, x, latent_rep_size, max_length, epsilon_std = 0.01):
        h = Convolution1D(9, 9, activation = 'relu', name='conv_1')(x)
        h = Convolution1D(9, 9, activation = 'relu', name='conv_2')(h)
        h = Convolution1D(10, 11, activation = 'relu', name='conv_3')(h)
        h = Flatten(name='flatten_1')(h)
        h = Dense(435, activation = 'relu', name='dense_1')(h)

        def sampling(args):
            z_mean_, z_log_var_ = args
            batch_size = K.shape(z_mean_)[0]
            epsilon = K.random_normal(shape=(batch_size, latent_rep_size), mean=0., std = epsilon_std)
            return z_mean_ + K.exp(z_log_var_ / 2) * epsilon

        z_mean = Dense(latent_rep_size, name='z_mean', activation = 'linear')(h)
        z_log_var = Dense(latent_rep_size, name='z_log_var', activation = 'linear')(h)

        def vae_loss(x, x_decoded_mean):
            x = K.flatten(x)
            x_decoded_mean = K.flatten(x_decoded_mean)
            xent_loss = max_length * objectives.binary_crossentropy(x, x_decoded_mean)
            kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis = -1)
            return xent_loss + kl_loss

        return (vae_loss, Lambda(sampling, output_shape=(latent_rep_size,), name='lambda')([z_mean, z_log_var])) 
開發者ID:maxhodak,項目名稱:keras-molecules,代碼行數:26,代碼來源:model.py

示例5: _buildEncoder

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution1D [as 別名]
def _buildEncoder(self, x, latent_rep_size, max_length, epsilon_std=0.01):
    h = Convolution1D(9, 9, activation='relu', name='conv_1')(x)
    h = Convolution1D(9, 9, activation='relu', name='conv_2')(h)
    h = Convolution1D(10, 11, activation='relu', name='conv_3')(h)
    h = Flatten(name='flatten_1')(h)
    h = Dense(435, activation='relu', name='dense_1')(h)

    def sampling(args):
      z_mean_, z_log_var_ = args
      batch_size = K.shape(z_mean_)[0]
      epsilon = K.random_normal(
          shape=(batch_size, latent_rep_size), mean=0., std=epsilon_std)
      return z_mean_ + K.exp(z_log_var_ / 2) * epsilon

    z_mean = Dense(latent_rep_size, name='z_mean', activation='linear')(h)
    z_log_var = Dense(latent_rep_size, name='z_log_var', activation='linear')(h)

    def vae_loss(x, x_decoded_mean):
      x = K.flatten(x)
      x_decoded_mean = K.flatten(x_decoded_mean)
      xent_loss = max_length * objectives.binary_crossentropy(x, x_decoded_mean)
      kl_loss = -0.5 * K.mean(
          1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
      return xent_loss + kl_loss

    return (vae_loss, Lambda(
        sampling, output_shape=(latent_rep_size,),
        name='lambda')([z_mean, z_log_var])) 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:30,代碼來源:model.py

示例6: embeddingCNN

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution1D [as 別名]
def embeddingCNN(shape, clusters=2, embedLayer=200, middle = 100):
    top_words = 2001
    lossType = 'binary_crossentropy' if clusters == 2 else 'categorical_crossentropy'
    model = Sequential()
    model.add(Embedding(top_words, embedLayer, input_length=shape))
    model.add(Convolution1D(nb_filter=embedLayer, filter_length=3, border_mode='same', activation='relu'))
    model.add(MaxPooling1D(pool_length=2))
    model.add(Flatten())
    model.add(Dense(middle, activation='relu'))
    model.add(Dense(clusters, activation='sigmoid'))
    model.compile(loss=lossType, optimizer='adam', metrics=['accuracy'])
    return model 
開發者ID:WayneDW,項目名稱:Sentiment-Analysis-in-Event-Driven-Stock-Price-Movement-Prediction,代碼行數:14,代碼來源:model_keras_cnn_rnn.py

示例7: model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution1D [as 別名]
def model(X_train, X_test, y_train, y_test, maxlen, max_features):
    embedding_size = 300
    pool_length = 4
    lstm_output_size = 100
    batch_size = 200
    nb_epoch = 1

    model = Sequential()
    model.add(Embedding(max_features, embedding_size, input_length=maxlen))
    model.add(Dropout({{uniform(0, 1)}}))
    # Note that we use unnamed parameters here, which is bad style, but is used here
    # to demonstrate that it works. Always prefer named parameters.
    model.add(Convolution1D({{choice([64, 128])}},
                            {{choice([6, 8])}},
                            border_mode='valid',
                            activation='relu',
                            subsample_length=1))
    model.add(MaxPooling1D(pool_length=pool_length))
    model.add(LSTM(lstm_output_size))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))

    model.compile(loss='binary_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy'])

    print('Train...')
    model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch,
              validation_data=(X_test, y_test))
    score, acc = model.evaluate(X_test, y_test, batch_size=batch_size)

    print('Test score:', score)
    print('Test accuracy:', acc)
    return {'loss': -acc, 'status': STATUS_OK, 'model': model} 
開發者ID:maxpumperla,項目名稱:hyperas,代碼行數:36,代碼來源:cnn_lstm.py

示例8: getconvmodel

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution1D [as 別名]
def getconvmodel(filter_length,nb_filter):
    model = Sequential()
    model.add(Convolution1D(nb_filter=nb_filter,
                            input_shape=(100,32),
                            filter_length=filter_length,
                            border_mode='same',
                            activation='relu',
                            subsample_length=1))
    model.add(Lambda(sum_1d, output_shape=(nb_filter,)))
    #model.add(BatchNormalization(mode=0))
    model.add(Dropout(0.5))
    return model 
開發者ID:joshsaxe,項目名稱:eXposeDeepNeuralNetwork,代碼行數:14,代碼來源:models.py

示例9: trainCNN

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution1D [as 別名]
def trainCNN(obj, dataset_headLines, dataset_body):
    embedding_dim = 300
    LSTM_neurons = 50
    dense_neuron = 16
    dimx = 100
    dimy = 200
    lamda = 0.0
    nb_filter = 100
    filter_length = 4
    vocab_size = 10000
    batch_size = 50
    epochs = 5
    ntn_out = 16
    ntn_in = nb_filter 
    state = False
    
    
    train_head,train_body,embedding_matrix = obj.process_data(sent_Q=dataset_headLines,
                                                     sent_A=dataset_body,dimx=dimx,dimy=dimy,
                                                     wordVec_model = wordVec_model)    
    inpx = Input(shape=(dimx,),dtype='int32',name='inpx')
    #x = Embedding(output_dim=embedding_dim, input_dim=vocab_size, input_length=dimx)(inpx)
    x = word2vec_embedding_layer(embedding_matrix)(inpx)  
    inpy = Input(shape=(dimy,),dtype='int32',name='inpy')
    #y = Embedding(output_dim=embedding_dim, input_dim=vocab_size, input_length=dimy)(inpy)
    y = word2vec_embedding_layer(embedding_matrix)(inpy)
    ques = Convolution1D(nb_filter=nb_filter, filter_length=filter_length,
                         border_mode='valid', activation='relu',
                         subsample_length=1)(x)
                            
    ans = Convolution1D(nb_filter=nb_filter, filter_length=filter_length,
                        border_mode='valid', activation='relu',
                        subsample_length=1)(y)
            
    #hx = Lambda(max_1d, output_shape=(nb_filter,))(ques)
    #hy = Lambda(max_1d, output_shape=(nb_filter,))(ans)
    hx = GlobalMaxPooling1D()(ques)
    hy = GlobalMaxPooling1D()(ans)
    #wordVec_model = []
    #h =  Merge(mode="concat",name='h')([hx,hy])
    
    h1 = Multiply()([hx,hy])
    h2 = Abs()([hx,hy])

    h =  Merge(mode="concat",name='h')([h1,h2])
    #h = NeuralTensorLayer(output_dim=1,input_dim=ntn_in)([hx,hy])
    #h = ntn_layer(ntn_in,ntn_out,activation=None)([hx,hy])
    #score = h
    wrap = Dense(dense_neuron, activation='relu',name='wrap')(h)
    #score = Dense(1,activation='sigmoid',name='score')(h)
    #wrap = Dense(dense_neuron,activation='relu',name='wrap')(h)
    score = Dense(4,activation='softmax',name='score')(wrap)
    
    #score=K.clip(score,1e-7,1.0-1e-7)
    #corr = CorrelationRegularization(-lamda)([hx,hy])
    #model = Model( [inpx,inpy],[score,corr])
    model = Model( [inpx,inpy],score)
    model.compile( loss='categorical_crossentropy',optimizer="adadelta",metrics=['accuracy'])    
    return model,train_head,train_body 
開發者ID:GauravBh1010tt,項目名稱:DeepLearn,代碼行數:61,代碼來源:p3_cnn.py

示例10: create_neural_network_rnn

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution1D [as 別名]
def create_neural_network_rnn(self):
        """
        Create the Neural Network Model

        :return: Keras Modelh
        """

        model = Sequential()

        # we start off with an efficient embedding layer which maps
        # our vocab indices into embedding_dims dimensions
        model.add(Embedding(12,  # Number of Features from State Space
                            300,  # Vector Size
                            input_length=self.input_dim))

        # we add a Convolution1D, which will learn nb_filter
        # word group filters of size filter_length:
        model.add(Convolution1D(nb_filter=self.nb_filter,
                                filter_length=self.filter_length,
                                border_mode='valid',
                                activation='relu',
                                subsample_length=1))

        # we use standard max pooling (halving the output of the previous
        # layer):
        model.add(MaxPooling1D(pool_length=self.pool_length))
        model.add(Dropout(self.dropout))

        # We flatten the output of the conv layer,
        # so that we can add a vanilla dense layer:
        model.add(Flatten())

        # We add a vanilla hidden layer:
        model.add(Dense(self.neurons))
        model.add(Dropout(self.dropout))
        model.add(Activation('relu'))

        # We project onto a single unit output layer, and squash it with a
        # sigmoid:
        model.add(Dense(len(self.actions)))
        model.add(Activation('linear'))

        model.compile(loss='mse',
                      optimizer=Adadelta(lr=0.00025))

        print(model.summary())

        return model 
開發者ID:dandxy89,項目名稱:rf_helicopter,代碼行數:50,代碼來源:Q_Learning_Agent.py

示例11: create_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution1D [as 別名]
def create_model(self, n_dim, r):
    # load inputs
    X, _, _ = self.inputs
    K.set_session(self.sess)

    with tf.name_scope('generator'):
      x = X
      L = self.layers
      # dim/layer: 4096, 2048, 1024, 512, 256, 128,  64,  32,
      n_filters = [128, 384, 512, 512, 512, 512, 512, 512]
      n_filtersizes = [65, 33, 17,  9,  9,  9,  9, 9, 9]
      downsampling_l = []

      print 'building model...'

      # downsampling layers
      for l, nf, fs in zip(range(L), n_filters, n_filtersizes):
        with tf.name_scope('downsc_conv%d' % l):
          x = (Convolution1D(nb_filter=nf, filter_length=fs, 
                  activation=None, border_mode='same', init=orthogonal_init,
                  subsample_length=2))(x)
          # if l > 0: x = BatchNormalization(mode=2)(x)
          x = LeakyReLU(0.2)(x)
          print 'D-Block: ', x.get_shape()
          downsampling_l.append(x)

      # bottleneck layer
      with tf.name_scope('bottleneck_conv'):
          x = (Convolution1D(nb_filter=n_filters[-1], filter_length=n_filtersizes[-1], 
                  activation=None, border_mode='same', init=orthogonal_init,
                  subsample_length=2))(x)
          x = Dropout(p=0.5)(x)
          x = LeakyReLU(0.2)(x)

      # upsampling layers
      for l, nf, fs, l_in in reversed(zip(range(L), n_filters, n_filtersizes, downsampling_l)):
        with tf.name_scope('upsc_conv%d' % l):
          # (-1, n/2, 2f)
          x = (Convolution1D(nb_filter=2*nf, filter_length=fs, 
                  activation=None, border_mode='same', init=orthogonal_init))(x)
          x = Dropout(p=0.5)(x)
          x = Activation('relu')(x)
          # (-1, n, f)
          x = SubPixel1D(x, r=2) 
          # (-1, n, 2f)
          x = K.concatenate(tensors=[x, l_in], axis=2)
          print 'U-Block: ', x.get_shape()

      # final conv layer
      with tf.name_scope('lastconv'):
        x = Convolution1D(nb_filter=2, filter_length=9, 
                activation=None, border_mode='same', init=normal_init)(x)    
        x = SubPixel1D(x, r=2) 
        print x.get_shape()

      g = merge([x, X], mode='sum')
    
    return g 
開發者ID:kuleshov,項目名稱:audio-super-res,代碼行數:60,代碼來源:audiounet.py

示例12: copy_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution1D [as 別名]
def copy_model(input_row,input_col):
         
         input = Input(shape=(input_row,input_col))
         filtersize1=1
         filtersize2=9
         filtersize3=10
         filter1=200
         filter2=150
         filter3=200
         dropout1=0.75
         dropout2=0.75
         dropout4=0.75
         dropout5=0.75
         dropout6=0
         L1CNN=0
         nb_classes=2
         batch_size=1200
         actfun="relu"; 
         optimization='adam';
         attentionhidden_x=10
         attentionhidden_xr=8
         attention_reg_x=0.151948
         attention_reg_xr=2
         dense_size1=149
         dense_size2=8
         dropout_dense1=0.298224
         dropout_dense2=0
         input = Input(shape=(input_row,input_col))
         x = conv.Convolution1D(filter1, filtersize1,kernel_initializer='he_normal',kernel_regularizer= l1(L1CNN),padding="same")(input) 
         x = Dropout(dropout1)(x)
         x = Activation(actfun)(x)
         x = conv.Convolution1D(filter2,filtersize2,kernel_initializer='he_normal',kernel_regularizer= l1(L1CNN),padding="same")(x)
         x = Dropout(dropout2)(x)
         x = Activation(actfun)(x)
         x = conv.Convolution1D(filter3,filtersize3,kernel_initializer='he_normal',kernel_regularizer= l1(L1CNN),padding="same")(x)
         x = Activation(actfun)(x)
         x_reshape=core.Reshape((x._keras_shape[2],x._keras_shape[1]))(x)
         x = Dropout(dropout4)(x)
         x_reshape=Dropout(dropout5)(x_reshape)
         decoder_x = Attention(hidden=attentionhidden_x,activation='linear',init='he_normal',W_regularizer=l1(attention_reg_x)) # success  
         decoded_x=decoder_x(x)
         output_x = myFlatten(x._keras_shape[2])(decoded_x)
         decoder_xr = Attention(hidden=attentionhidden_xr,activation='linear',init='he_normal',W_regularizer=l1(attention_reg_xr))
         decoded_xr=decoder_xr(x_reshape)
         output_xr = myFlatten(x_reshape._keras_shape[2])(decoded_xr)
         output=merge([output_x,output_xr],mode='concat')
         output=Dropout(dropout6)(output)
         output=Dense(dense_size1,kernel_initializer='he_normal',activation='relu')(output)
         output=Dropout(dropout_dense1)(output)
         output=Dense(dense_size2,activation="relu",kernel_initializer='he_normal')(output)
         output=Dropout(dropout_dense2)(output)
         out=Dense(nb_classes,kernel_initializer='he_normal',activation='softmax')(output)
         cp_model=Model(input,out)
         return cp_model 
開發者ID:duolinwang,項目名稱:MusiteDeep,代碼行數:56,代碼來源:multiCNN.py

示例13: time_glot_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution1D [as 別名]
def time_glot_model(timesteps=128, input_dim=22, output_dim=400, model_name="time_glot_model"):

    ac_input = Input(shape=(timesteps, input_dim), name="ac_input")
 
    x_t = ac_input
    
    x_t = GRU(50, activation='relu', kernel_initializer='glorot_normal', 
              return_sequences=False, unroll=False)(x_t)
    
    x = x_t
    
    x = Dense(output_dim)(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)

    x = Reshape((output_dim, 1))(x)    

    x = Convolution1D(filters=100,
                        kernel_size=15,
                        padding='same',
                        strides=1)(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.1)(x)

    x = Convolution1D(filters=100,
                      kernel_size=15,
                      padding='same',
                      strides=1)(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.1)(x)

    x = Convolution1D(filters=100,
                        kernel_size=15,
                        padding='same',
                        strides=1)(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.1)(x)

    x = Convolution1D(filters=100,
                        kernel_size=15,
                        padding='same',
                        strides=1)(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.1)(x)
                    
    x = Convolution1D(filters=1,
                      kernel_size=15,
                      padding='same',
                      strides=1)(x)

    # remove singleton outer dimension 
    x = Reshape((output_dim,))(x)

    x_t = x
        
    x_fft = fft_layer(x)

    model = Model(inputs=[ac_input], outputs=[x_t, x_fft], name=model_name)

    return model 
開發者ID:ljuvela,項目名稱:ResGAN,代碼行數:62,代碼來源:models.py

示例14: generator

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution1D [as 別名]
def generator(input_dim=400, ac_dim=22, output_dim=400):
    
    pls_input = Input(shape=(input_dim,), name="pls_input")
    noise_input = Input(shape=(input_dim,), name="noise_input")

    pls = Reshape((input_dim, 1))(pls_input)    
    noise = Reshape((input_dim, 1))(noise_input)
 
    x = concatenate([pls, noise], axis=2) # concat as different channels

    x = Convolution1D(filters=100,
                        kernel_size=15,
                        padding='same',
                        strides=1)(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.1)(x)

    x = concatenate([pls, x], axis=2) # concat as different channels

    x = Convolution1D(filters=100,
                      kernel_size=15,
                      padding='same',
                      strides=1)(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.1)(x)

    x = concatenate([pls, x], axis=2) # concat as different channels

    x = Convolution1D(filters=100,
                        kernel_size=15,
                        padding='same',
                        strides=1)(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.1)(x)

    x = concatenate([pls, x], axis=2) # concat as different channels
                    
    x = Convolution1D(filters=1,
                      kernel_size=15,
                      padding='same',
                        strides=1)(x)

    x = Activation('tanh')(x)

    # force additivity   
    x = add([pls, x]) 
             
    # remove singleton outer dimension 
    x = Reshape((output_dim,))(x)

    # add fft channel to output
    x_fft = fft_layer(x)
     
    model = Model(inputs=[pls_input, noise_input], outputs=[x, x_fft],
                  name="generator")

    return model 
開發者ID:ljuvela,項目名稱:ResGAN,代碼行數:59,代碼來源:models.py

示例15: discriminator

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Convolution1D [as 別名]
def discriminator(input_dim=400):

    pls_input = Input(shape=(input_dim,), name="pls_input") 
    fft_input = Input(shape=(input_dim,), name="fft_input") 

    x = Reshape((input_dim, 1))(pls_input)
    x_fft = Reshape((input_dim, 1))(fft_input)    

    x = concatenate([x, x_fft], axis=2) # concat as different channels
    
    # input shape batch_size x 1 (number of channels) x 400 (length of pulse)
    x = Convolution1D(filters=64,
                        kernel_size=7,
                        strides=3)(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.1)(x)

    # shape [batch_size x 64 x 132]
    x = Convolution1D(filters=128,
                        kernel_size=7,
                        strides=3)(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.1)(x)

    # shape [batch_size x 128 x 42]
    x = Convolution1D(filters=256,
                        kernel_size=7,
                        strides=3)(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.1)(x)

    peek_output = x # used for generator training regularization

    # shape [batch_size x 256 x 12]
    x = Convolution1D(filters=128,
                        kernel_size=5,
                        strides=2)(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.1)(x)

    # shape [batch_size x 128 x 4]                                                             
 
    #nn.Sigmoid() # use sigmoid for normal gan, commented out for LS-GAN                                 
    x = Convolution1D(filters=1,
                      kernel_size=3,
                      strides=2)(x)

    # shape [batch_size x 1 x 1] 
    x = Reshape((1,))(x)

    model = Model(inputs=[pls_input, fft_input], outputs=[x, peek_output],
                  name="discriminator")

    return model 
開發者ID:ljuvela,項目名稱:ResGAN,代碼行數:56,代碼來源:models.py


注:本文中的keras.layers.convolutional.Convolution1D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。