當前位置: 首頁>>代碼示例>>Python>>正文


Python convolutional.Conv1D方法代碼示例

本文整理匯總了Python中keras.layers.convolutional.Conv1D方法的典型用法代碼示例。如果您正苦於以下問題:Python convolutional.Conv1D方法的具體用法?Python convolutional.Conv1D怎麽用?Python convolutional.Conv1D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers.convolutional的用法示例。


在下文中一共展示了convolutional.Conv1D方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: m_rec

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Conv1D [as 別名]
def m_rec(num_classes=10):
    from keras.layers.recurrent import LSTM
    print('Using Model LSTM 1')
    m = Sequential()
    m.add(Conv1D(64,
                 input_shape=[AUDIO_LENGTH, 1],
                 kernel_size=80,
                 strides=4,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))
    m.add(LSTM(32,
               kernel_regularizer=regularizers.l2(l=0.0001),
               return_sequences=True,
               dropout=0.2))
    m.add(LSTM(32,
               kernel_regularizer=regularizers.l2(l=0.0001),
               return_sequences=False,
               dropout=0.2))
    m.add(Dense(32))
    m.add(Dense(num_classes, activation='softmax'))
    return m 
開發者ID:philipperemy,項目名稱:very-deep-convnets-raw-waveforms,代碼行數:27,代碼來源:models.py

示例2: create_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Conv1D [as 別名]
def create_model(self):
        embedding_size = 100
        self.model = Sequential()
        self.model.add(Embedding(input_dim=self.vocab_size, input_length=self.max_len, output_dim=embedding_size))
        self.model.add(SpatialDropout1D(0.2))
        self.model.add(Conv1D(filters=256, kernel_size=5, padding='same', activation='relu'))
        self.model.add(GlobalMaxPool1D())
        self.model.add(Dense(units=len(self.labels), activation='softmax'))

        self.model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) 
開發者ID:chen0040,項目名稱:keras-english-resume-parser-and-analyzer,代碼行數:12,代碼來源:cnn.py

示例3: define_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Conv1D [as 別名]
def define_model(self, length, vocab_size):

        embedding_size = 100
        cnn_filter_size = 32

        inputs1 = Input(shape=(length,))
        embedding1 = Embedding(vocab_size, embedding_size)(inputs1)
        conv1 = Conv1D(filters=cnn_filter_size, kernel_size=4, activation='relu')(
            embedding1)
        drop1 = Dropout(0.5)(conv1)
        pool1 = MaxPooling1D(pool_size=2)(drop1)
        flat1 = Flatten()(pool1)

        inputs2 = Input(shape=(length,))
        embedding2 = Embedding(vocab_size, embedding_size)(inputs2)
        conv2 = Conv1D(filters=cnn_filter_size, kernel_size=6, activation='relu')(
            embedding2)
        drop2 = Dropout(0.5)(conv2)
        pool2 = MaxPooling1D(pool_size=2)(drop2)
        flat2 = Flatten()(pool2)

        inputs3 = Input(shape=(length,))
        embedding3 = Embedding(vocab_size, embedding_size)(inputs3)
        conv3 = Conv1D(filters=cnn_filter_size, kernel_size=8, activation='relu')(
            embedding3)
        drop3 = Dropout(0.5)(conv3)
        pool3 = MaxPooling1D(pool_size=2)(drop3)
        flat3 = Flatten()(pool3)

        merged = concatenate([flat1, flat2, flat3])
        # interpretation
        dense1 = Dense(10, activation='relu')(merged)

        outputs = Dense(units=len(self.labels), activation='softmax')(dense1)

        model = Model(inputs=[inputs1, inputs2, inputs3], outputs=outputs)
        # compile
        model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
        # summarize
        print(model.summary())
        return model 
開發者ID:chen0040,項目名稱:keras-english-resume-parser-and-analyzer,代碼行數:43,代碼來源:cnn.py

示例4: m3

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Conv1D [as 別名]
def m3(num_classes=10):
    print('Using Model M3')
    m = Sequential()
    m.add(Conv1D(256,
                 input_shape=[AUDIO_LENGTH, 1],
                 kernel_size=80,
                 strides=4,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))
    m.add(Conv1D(256,
                 kernel_size=3,
                 strides=1,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))

    m.add(MaxPooling1D(pool_size=4, strides=None))
    m.add(Lambda(lambda x: K.mean(x, axis=1))) # Same as GAP for 1D Conv Layer
    m.add(Dense(num_classes, activation='softmax'))
    return m 
開發者ID:philipperemy,項目名稱:very-deep-convnets-raw-waveforms,代碼行數:28,代碼來源:models.py

示例5: cnn_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Conv1D [as 別名]
def cnn_model(self, params):
        """
        Method builds uncompiled intent_model of shallow-and-wide CNN
        Args:
            params: disctionary of parameters for NN

        Returns:
            Uncompiled intent_model
        """
        if type(self.opt['kernel_sizes_cnn']) is str:
            self.opt['kernel_sizes_cnn'] = [int(x) for x in
                                            self.opt['kernel_sizes_cnn'].split(' ')]

        inp = Input(shape=(params['text_size'], params['embedding_size']))

        outputs = []
        for i in range(len(params['kernel_sizes_cnn'])):
            output_i = Conv1D(params['filters_cnn'], kernel_size=params['kernel_sizes_cnn'][i],
                              activation=None,
                              kernel_regularizer=l2(params['coef_reg_cnn']),
                              padding='same')(inp)
            output_i = BatchNormalization()(output_i)
            output_i = Activation('relu')(output_i)
            output_i = GlobalMaxPooling1D()(output_i)
            outputs.append(output_i)

        output = concatenate(outputs, axis=1)

        output = Dropout(rate=params['dropout_rate'])(output)
        output = Dense(params['dense_size'], activation=None,
                       kernel_regularizer=l2(params['coef_reg_den']))(output)
        output = BatchNormalization()(output)
        output = Activation('relu')(output)
        output = Dropout(rate=params['dropout_rate'])(output)
        output = Dense(self.n_classes, activation=None,
                       kernel_regularizer=l2(params['coef_reg_den']))(output)
        output = BatchNormalization()(output)
        act_output = Activation('sigmoid')(output)
        model = Model(inputs=inp, outputs=act_output)
        return model 
開發者ID:deepmipt,項目名稱:intent_classifier,代碼行數:42,代碼來源:multiclass.py

示例6: model_cnn

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Conv1D [as 別名]
def model_cnn(vocab, weights, dataPath, batchn, epoch):
    global LEN
    global DIM
    global BATCH
    testx, testy = build_dataset('%s%d'%(dataPath, 2528), vocab, weights=weights)
    testx = np.array(testx, dtype=np.float64)
    testy = np.array(testx, dtype=np.float64)
    model = Sequential()
    #model.add(Embedding(400001, 50, input_length=LEN, mask_zero=False,weights=[embedModel]))
    model.add(Conv1D(input_shape=(LEN, DIM), filters=32, kernel_size=30, padding='same', activation='relu'))
    model.add(MaxPooling1D(pool_size=2))
    model.add(Flatten())
    model.add(Dense(250, activation='softmax'))
    model.add(Dense(1, activation='softmax'))
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    print(model.summary())
    index = 0
    while True:
        data, result = build_dataset('%s%d'%(dataPath, index%2528), vocab, weights)
        for i in range(1, batchn):
            index += 1
            newData, newResult = build_dataset('%s%d'%(dataPath, index), vocab, weights)
            data.extend(newData)
            result.extend(newResult)
        model.fit(np.array(data, dtype=np.float64), np.array(result, dtype=np.float64), epochs=10, batch_size=BATCH, verbose=2, validation_data = (testx,testy))
        model.save('hotnews_c_%d_%d.h5'%(BATCH, index))
        predict = model.predict(testx)
        for i in range(testy.shape[0]):
            print(testy[i], predict[i])
        index += 1
        if index > epoch:
            return model 
開發者ID:moment-of-peace,項目名稱:EventForecast,代碼行數:34,代碼來源:rnn_text.py

示例7: Unet

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Conv1D [as 別名]
def Unet(nClasses, optimizer=None, input_length=1800, nChannels=1):
    inputs = Input((input_length, nChannels))
    conv1 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
    conv1 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
    pool1 = MaxPooling1D(pool_size=2)(conv1)

    conv2 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
    conv2 = Dropout(0.2)(conv2)
    conv2 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
    pool2 = MaxPooling1D(pool_size=2)(conv2)
    
    conv3 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
    conv3 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
    pool3 = MaxPooling1D(pool_size=2)(conv3)

    conv4 = Conv1D(128, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
    conv4 = Dropout(0.5)(conv4)
    conv4 = Conv1D(128, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)

    up1 = Conv1D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling1D(size=2)(conv4))
    merge1 = concatenate([up1, conv3], axis=-1)
    conv5 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(merge1)
    conv5 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
    
    up2 = Conv1D(32, 2, activation='relu', padding='same', kernel_initializer = 'he_normal')(UpSampling1D(size=2)(conv5))
    merge2 = concatenate([up2, conv2], axis=-1)
    conv6 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer = 'he_normal')(merge2)
    conv6 = Dropout(0.2)(conv6)
    conv6 = Conv1D(32, 32, activation='relu', padding='same')(conv6)
    
    up3 = Conv1D(16, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling1D(size=2)(conv6))
    merge3 = concatenate([up3, conv1], axis=-1)
    conv7 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(merge3)
    conv7 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
    
    conv8 = Conv1D(nClasses, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
    conv8 = core.Reshape((nClasses, input_length))(conv8)
    conv8 = core.Permute((2, 1))(conv8)

    conv9 = core.Activation('softmax')(conv8)

    model = Model(inputs=inputs, outputs=conv9)
    if not optimizer is None:
        model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=['accuracy'])

    return model 
開發者ID:Aiwiscal,項目名稱:ECG_UNet,代碼行數:48,代碼來源:Unet.py

示例8: test_causal_dilated_conv

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Conv1D [as 別名]
def test_causal_dilated_conv():
    # Causal:
    layer_test(convolutional.Conv1D,
               input_data=np.reshape(np.arange(4, dtype='float32'), (1, 4, 1)),
               kwargs={
                   'filters': 1,
                   'kernel_size': 2,
                   'dilation_rate': 1,
                   'padding': 'causal',
                   'kernel_initializer': 'ones',
                   'use_bias': False,
               },
               expected_output=[[[0], [1], [3], [5]]]
               )

    # Non-causal:
    layer_test(convolutional.Conv1D,
               input_data=np.reshape(np.arange(4, dtype='float32'), (1, 4, 1)),
               kwargs={
                   'filters': 1,
                   'kernel_size': 2,
                   'dilation_rate': 1,
                   'padding': 'valid',
                   'kernel_initializer': 'ones',
                   'use_bias': False,
               },
               expected_output=[[[1], [3], [5]]]
               )

    # Causal dilated with larger kernel size:
    layer_test(convolutional.Conv1D,
               input_data=np.reshape(np.arange(10, dtype='float32'), (1, 10, 1)),
               kwargs={
                   'filters': 1,
                   'kernel_size': 3,
                   'dilation_rate': 2,
                   'padding': 'causal',
                   'kernel_initializer': 'ones',
                   'use_bias': False,
               },
               expected_output=np.float32([[[0], [1], [2], [4], [6], [9], [12], [15], [18], [21]]])
               ) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:44,代碼來源:convolutional_test.py

示例9: test_conv_1d

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Conv1D [as 別名]
def test_conv_1d():
    batch_size = 2
    steps = 8
    input_dim = 2
    kernel_size = 3
    filters = 3

    for padding in _convolution_paddings:
        for strides in [1, 2]:
            if padding == 'same' and strides != 1:
                continue
            layer_test(convolutional.Conv1D,
                       kwargs={'filters': filters,
                               'kernel_size': kernel_size,
                               'padding': padding,
                               'strides': strides},
                       input_shape=(batch_size, steps, input_dim))

            layer_test(convolutional.Conv1D,
                       kwargs={'filters': filters,
                               'kernel_size': kernel_size,
                               'padding': padding,
                               'kernel_regularizer': 'l2',
                               'bias_regularizer': 'l2',
                               'activity_regularizer': 'l2',
                               'kernel_constraint': 'max_norm',
                               'bias_constraint': 'max_norm',
                               'strides': strides},
                       input_shape=(batch_size, steps, input_dim))

    # Test dilation
    layer_test(convolutional.Conv1D,
               kwargs={'filters': filters,
                       'kernel_size': kernel_size,
                       'padding': padding,
                       'dilation_rate': 2,
                       'activation': None},
               input_shape=(batch_size, steps, input_dim))

    convolutional.Conv1D(filters=filters,
                         kernel_size=kernel_size,
                         padding=padding,
                         input_shape=(input_dim,)) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:45,代碼來源:convolutional_test.py

示例10: m5

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Conv1D [as 別名]
def m5(num_classes=10):
    print('Using Model M5')
    m = Sequential()
    m.add(Conv1D(128,
                 input_shape=[AUDIO_LENGTH, 1],
                 kernel_size=80,
                 strides=4,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))
    m.add(Conv1D(128,
                 kernel_size=3,
                 strides=1,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))
    m.add(Conv1D(256,
                 kernel_size=3,
                 strides=1,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))
    m.add(Conv1D(512,
                 kernel_size=3,
                 strides=1,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))
    m.add(Lambda(lambda x: K.mean(x, axis=1))) # Same as GAP for 1D Conv Layer
    m.add(Dense(num_classes, activation='softmax'))
    return m 
開發者ID:philipperemy,項目名稱:very-deep-convnets-raw-waveforms,代碼行數:45,代碼來源:models.py

示例11: m11

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Conv1D [as 別名]
def m11(num_classes=10):
    print('Using Model M11')
    m = Sequential()
    m.add(Conv1D(64,
                 input_shape=[AUDIO_LENGTH, 1],
                 kernel_size=80,
                 strides=4,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))

    for i in range(2):
        m.add(Conv1D(64,
                     kernel_size=3,
                     strides=1,
                     padding='same',
                     kernel_initializer='glorot_uniform',
                     kernel_regularizer=regularizers.l2(l=0.0001)))
        m.add(BatchNormalization())
        m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))

    for i in range(2):
        m.add(Conv1D(128,
                     kernel_size=3,
                     strides=1,
                     padding='same',
                     kernel_initializer='glorot_uniform',
                     kernel_regularizer=regularizers.l2(l=0.0001)))
        m.add(BatchNormalization())
        m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))

    for i in range(3):
        m.add(Conv1D(256,
                     kernel_size=3,
                     strides=1,
                     padding='same',
                     kernel_initializer='glorot_uniform',
                     kernel_regularizer=regularizers.l2(l=0.0001)))
        m.add(BatchNormalization())
        m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))

    for i in range(2):
        m.add(Conv1D(512,
                     kernel_size=3,
                     strides=1,
                     padding='same',
                     kernel_initializer='glorot_uniform',
                     kernel_regularizer=regularizers.l2(l=0.0001)))
        m.add(BatchNormalization())
        m.add(Activation('relu'))

    m.add(Lambda(lambda x: K.mean(x, axis=1))) # Same as GAP for 1D Conv Layer
    m.add(Dense(num_classes, activation='softmax'))
    return m 
開發者ID:philipperemy,項目名稱:very-deep-convnets-raw-waveforms,代碼行數:62,代碼來源:models.py

示例12: m18

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Conv1D [as 別名]
def m18(num_classes=10):
    print('Using Model M18')
    m = Sequential()
    m.add(Conv1D(64,
                 input_shape=[AUDIO_LENGTH, 1],
                 kernel_size=80,
                 strides=4,
                 padding='same',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=regularizers.l2(l=0.0001)))
    m.add(BatchNormalization())
    m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))

    for i in range(4):
        m.add(Conv1D(64,
                     kernel_size=3,
                     strides=1,
                     padding='same',
                     kernel_initializer='glorot_uniform',
                     kernel_regularizer=regularizers.l2(l=0.0001)))
        m.add(BatchNormalization())
        m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))

    for i in range(4):
        m.add(Conv1D(128,
                     kernel_size=3,
                     strides=1,
                     padding='same',
                     kernel_initializer='glorot_uniform',
                     kernel_regularizer=regularizers.l2(l=0.0001)))
        m.add(BatchNormalization())
        m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))

    for i in range(4):
        m.add(Conv1D(256,
                     kernel_size=3,
                     strides=1,
                     padding='same',
                     kernel_initializer='glorot_uniform',
                     kernel_regularizer=regularizers.l2(l=0.0001)))
        m.add(BatchNormalization())
        m.add(Activation('relu'))
    m.add(MaxPooling1D(pool_size=4, strides=None))

    for i in range(4):
        m.add(Conv1D(512,
                     kernel_size=3,
                     strides=1,
                     padding='same',
                     kernel_initializer='glorot_uniform',
                     kernel_regularizer=regularizers.l2(l=0.0001)))
        m.add(BatchNormalization())
        m.add(Activation('relu'))

    m.add(Lambda(lambda x: K.mean(x, axis=1))) # Same as GAP for 1D Conv Layer
    m.add(Dense(num_classes, activation='softmax'))
    return m 
開發者ID:philipperemy,項目名稱:very-deep-convnets-raw-waveforms,代碼行數:62,代碼來源:models.py

示例13: evaluate_conv_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Conv1D [as 別名]
def evaluate_conv_model(dataset, num_classes, maxlen=125,embedding_dims=250,max_features=5000,nb_filter=300,filter_length=3,num_hidden=250,dropout=0.25,verbose=True,pool_length=2,with_lstm=False):
    (X_train, Y_train), (X_test, Y_test) = dataset
    
    batch_size = 32
    nb_epoch = 7

    if verbose:
        print('Loading data...')
        print(len(X_train), 'train sequences')
        print(len(X_test), 'test sequences')
        print('Pad sequences (samples x time)')
    
    X_train = sequence.pad_sequences(X_train, maxlen=maxlen)
    X_test = sequence.pad_sequences(X_test, maxlen=maxlen)

    if verbose:
        print('X_train shape:', X_train.shape)
        print('X_test shape:', X_test.shape)
        print('Build model...')

    model = Sequential()
    # we start off with an efficient embedding layer which maps
    # our vocab indices into embedding_dims dimensions
    model.add(Embedding(max_features, embedding_dims, input_length=maxlen))
    model.add(Dropout(dropout))

    # we add a Convolution1D, which will learn nb_filter
    # word group filters of size filter_length:
    model.add(Conv1D(activation="relu", filters=nb_filter, kernel_size=filter_length, strides=1, padding="valid"))
    if pool_length:
        # we use standard max pooling (halving the output of the previous layer):
        model.add(MaxPooling1D(pool_size=2))
    if with_lstm:
        model.add(LSTM(125))
    else:
        # We flatten the output of the conv layer,
        # so that we can add a vanilla dense layer:
        model.add(Flatten())

        #We add a vanilla hidden layer:
        model.add(Dense(num_hidden))
        model.add(Activation('relu'))
        model.add(Dropout(dropout))

    # We project onto a single unit output layer, and squash it with a sigmoid:
    model.add(Dense(num_classes))
    model.add(Activation('softmax'))

    model.compile(loss='categorical_crossentropy',optimizer='adam',  metrics=['accuracy'])
    model.fit(X_train, Y_train, batch_size=batch_size,epochs=nb_epoch, validation_split=0.1)
    score = model.evaluate(X_test, Y_test, batch_size=batch_size, verbose=1 if verbose else 0)
    if verbose:
        print('Test score:',score[0])
        print('Test accuracy:', score[1])
    predictions = model.predict_classes(X_test,verbose=1 if verbose else 0)
    return predictions,score[1] 
開發者ID:andreykurenkov,項目名稱:emailinsight,代碼行數:58,代碼來源:kerasClassify.py

示例14: dcnn_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import Conv1D [as 別名]
def dcnn_model(self, params):
        """
        Method builds uncompiled intent_model of deep CNN
        Args:
            params: disctionary of parameters for NN

        Returns:
            Uncompiled intent_model
        """
        if type(self.opt['kernel_sizes_cnn']) is str:
            self.opt['kernel_sizes_cnn'] = [int(x) for x in
                                            self.opt['kernel_sizes_cnn'].split(' ')]

        if type(self.opt['filters_cnn']) is str:
            self.opt['filters_cnn'] = [int(x) for x in
                                       self.opt['filters_cnn'].split(' ')]

        inp = Input(shape=(params['text_size'], params['embedding_size']))

        output = inp

        for i in range(len(params['kernel_sizes_cnn'])):
            output = Conv1D(params['filters_cnn'][i], kernel_size=params['kernel_sizes_cnn'][i],
                            activation=None,
                            kernel_regularizer=l2(params['coef_reg_cnn']),
                            padding='same')(output)
            output = BatchNormalization()(output)
            output = Activation('relu')(output)
            output = MaxPooling1D()(output)

        output = GlobalMaxPooling1D()(output)
        output = Dropout(rate=params['dropout_rate'])(output)
        output = Dense(params['dense_size'], activation=None,
                       kernel_regularizer=l2(params['coef_reg_den']))(output)
        output = BatchNormalization()(output)
        output = Activation('relu')(output)
        output = Dropout(rate=params['dropout_rate'])(output)
        output = Dense(self.n_classes, activation=None,
                       kernel_regularizer=l2(params['coef_reg_den']))(output)
        output = BatchNormalization()(output)
        act_output = Activation('sigmoid')(output)
        model = Model(inputs=inp, outputs=act_output)
        return model 
開發者ID:deepmipt,項目名稱:intent_classifier,代碼行數:45,代碼來源:multiclass.py


注:本文中的keras.layers.convolutional.Conv1D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。