當前位置: 首頁>>代碼示例>>Python>>正文


Python convolutional.AveragePooling2D方法代碼示例

本文整理匯總了Python中keras.layers.convolutional.AveragePooling2D方法的典型用法代碼示例。如果您正苦於以下問題:Python convolutional.AveragePooling2D方法的具體用法?Python convolutional.AveragePooling2D怎麽用?Python convolutional.AveragePooling2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在keras.layers.convolutional的用法示例。


在下文中一共展示了convolutional.AveragePooling2D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: block_inception_a

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def block_inception_a(input):
    if K.image_dim_ordering() == "th":
        channel_axis = 1
    else:
        channel_axis = -1

    branch_0 = conv2d_bn(input, 96, 1, 1)

    branch_1 = conv2d_bn(input, 64, 1, 1)
    branch_1 = conv2d_bn(branch_1, 96, 3, 3)

    branch_2 = conv2d_bn(input, 64, 1, 1)
    branch_2 = conv2d_bn(branch_2, 96, 3, 3)
    branch_2 = conv2d_bn(branch_2, 96, 3, 3)

    branch_3 = AveragePooling2D((3,3), strides=(1,1), border_mode='same')(input)
    branch_3 = conv2d_bn(branch_3, 96, 1, 1)

    x = merge([branch_0, branch_1, branch_2, branch_3], mode='concat', concat_axis=channel_axis)
    return x 
開發者ID:filonenkoa,項目名稱:cnn_evaluation_smoke,代碼行數:22,代碼來源:inception_v4.py

示例2: block_inception_b

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def block_inception_b(input):
    if K.image_dim_ordering() == "th":
        channel_axis = 1
    else:
        channel_axis = -1

    branch_0 = conv2d_bn(input, 384, 1, 1)

    branch_1 = conv2d_bn(input, 192, 1, 1)
    branch_1 = conv2d_bn(branch_1, 224, 1, 7)
    branch_1 = conv2d_bn(branch_1, 256, 7, 1)

    branch_2 = conv2d_bn(input, 192, 1, 1)
    branch_2 = conv2d_bn(branch_2, 192, 7, 1)
    branch_2 = conv2d_bn(branch_2, 224, 1, 7)
    branch_2 = conv2d_bn(branch_2, 224, 7, 1)
    branch_2 = conv2d_bn(branch_2, 256, 1, 7)

    branch_3 = AveragePooling2D((3,3), strides=(1,1), border_mode='same')(input)
    branch_3 = conv2d_bn(branch_3, 128, 1, 1)

    x = merge([branch_0, branch_1, branch_2, branch_3], mode='concat', concat_axis=channel_axis)
    return x 
開發者ID:filonenkoa,項目名稱:cnn_evaluation_smoke,代碼行數:25,代碼來源:inception_v4.py

示例3: block_inception_a

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def block_inception_a(input):
    if K.image_data_format() == 'channels_first':
        channel_axis = 1
    else:
        channel_axis = -1

    branch_0 = conv2d_bn(input, 96, 1, 1)

    branch_1 = conv2d_bn(input, 64, 1, 1)
    branch_1 = conv2d_bn(branch_1, 96, 3, 3)

    branch_2 = conv2d_bn(input, 64, 1, 1)
    branch_2 = conv2d_bn(branch_2, 96, 3, 3)
    branch_2 = conv2d_bn(branch_2, 96, 3, 3)

    branch_3 = AveragePooling2D((3,3), strides=(1,1), padding='same')(input)
    branch_3 = conv2d_bn(branch_3, 96, 1, 1)

    x = concatenate([branch_0, branch_1, branch_2, branch_3], axis=channel_axis)
    return x 
開發者ID:Jeremyczhj,項目名稱:FashionAI_Tianchi_2018,代碼行數:22,代碼來源:inception_v4.py

示例4: block_inception_b

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def block_inception_b(input):
    if K.image_data_format() == 'channels_first':
        channel_axis = 1
    else:
        channel_axis = -1

    branch_0 = conv2d_bn(input, 384, 1, 1)

    branch_1 = conv2d_bn(input, 192, 1, 1)
    branch_1 = conv2d_bn(branch_1, 224, 1, 7)
    branch_1 = conv2d_bn(branch_1, 256, 7, 1)

    branch_2 = conv2d_bn(input, 192, 1, 1)
    branch_2 = conv2d_bn(branch_2, 192, 7, 1)
    branch_2 = conv2d_bn(branch_2, 224, 1, 7)
    branch_2 = conv2d_bn(branch_2, 224, 7, 1)
    branch_2 = conv2d_bn(branch_2, 256, 1, 7)

    branch_3 = AveragePooling2D((3,3), strides=(1,1), padding='same')(input)
    branch_3 = conv2d_bn(branch_3, 128, 1, 1)

    x = concatenate([branch_0, branch_1, branch_2, branch_3], axis=channel_axis)
    return x 
開發者ID:Jeremyczhj,項目名稱:FashionAI_Tianchi_2018,代碼行數:25,代碼來源:inception_v4.py

示例5: test_averagepooling_2d

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def test_averagepooling_2d():
    layer_test(convolutional.AveragePooling2D,
               kwargs={'strides': (2, 2),
                       'padding': 'same',
                       'pool_size': (2, 2)},
               input_shape=(3, 5, 6, 4))
    layer_test(convolutional.AveragePooling2D,
               kwargs={'strides': (2, 2),
                       'padding': 'valid',
                       'pool_size': (3, 3)},
               input_shape=(3, 5, 6, 4))
    layer_test(convolutional.AveragePooling2D,
               kwargs={'strides': (1, 1),
                       'padding': 'valid',
                       'pool_size': (2, 2),
                       'data_format': 'channels_first'},
               input_shape=(3, 4, 5, 6)) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:19,代碼來源:convolutional_test.py

示例6: inception_A

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def inception_A(input):
    if K.image_dim_ordering() == "th":
        channel_axis = 1
    else:
        channel_axis = -1

    a1 = conv_block(input, 96, 1, 1)

    a2 = conv_block(input, 64, 1, 1)
    a2 = conv_block(a2, 96, 3, 3)

    a3 = conv_block(input, 64, 1, 1)
    a3 = conv_block(a3, 96, 3, 3)
    a3 = conv_block(a3, 96, 3, 3)

    a4 = AveragePooling2D((3, 3), strides=(1, 1), border_mode='same')(input)
    a4 = conv_block(a4, 96, 1, 1)

    m = merge([a1, a2, a3, a4], mode='concat', concat_axis=channel_axis)
    return m 
開發者ID:titu1994,項目名稱:Inception-v4,代碼行數:22,代碼來源:inception_v4.py

示例7: inception_B

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def inception_B(input):
    if K.image_dim_ordering() == "th":
        channel_axis = 1
    else:
        channel_axis = -1

    b1 = conv_block(input, 384, 1, 1)

    b2 = conv_block(input, 192, 1, 1)
    b2 = conv_block(b2, 224, 1, 7)
    b2 = conv_block(b2, 256, 7, 1)

    b3 = conv_block(input, 192, 1, 1)
    b3 = conv_block(b3, 192, 7, 1)
    b3 = conv_block(b3, 224, 1, 7)
    b3 = conv_block(b3, 224, 7, 1)
    b3 = conv_block(b3, 256, 1, 7)

    b4 = AveragePooling2D((3, 3), strides=(1, 1), border_mode='same')(input)
    b4 = conv_block(b4, 128, 1, 1)

    m = merge([b1, b2, b3, b4], mode='concat', concat_axis=channel_axis)
    return m 
開發者ID:titu1994,項目名稱:Inception-v4,代碼行數:25,代碼來源:inception_v4.py

示例8: inception_C

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def inception_C(input):
    if K.image_dim_ordering() == "th":
        channel_axis = 1
    else:
        channel_axis = -1

    c1 = conv_block(input, 256, 1, 1)

    c2 = conv_block(input, 384, 1, 1)
    c2_1 = conv_block(c2, 256, 1, 3)
    c2_2 = conv_block(c2, 256, 3, 1)
    c2 = merge([c2_1, c2_2], mode='concat', concat_axis=channel_axis)

    c3 = conv_block(input, 384, 1, 1)
    c3 = conv_block(c3, 448, 3, 1)
    c3 = conv_block(c3, 512, 1, 3)
    c3_1 = conv_block(c3, 256, 1, 3)
    c3_2 = conv_block(c3, 256, 3, 1)
    c3 = merge([c3_1, c3_2], mode='concat', concat_axis=channel_axis)

    c4 = AveragePooling2D((3, 3), strides=(1, 1), border_mode='same')(input)
    c4 = conv_block(c4, 256, 1, 1)

    m = merge([c1, c2, c3, c4], mode='concat', concat_axis=channel_axis)
    return m 
開發者ID:titu1994,項目名稱:Inception-v4,代碼行數:27,代碼來源:inception_v4.py

示例9: block_inception_a

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def block_inception_a(input):
    if K.image_data_format() == 'channels_first':
        channel_axis = 1
    else:
        channel_axis = -1

    branch_0 = conv2d_bn(input, 96, 1, 1)

    branch_1 = conv2d_bn(input, 64, 1, 1)
    branch_1 = conv2d_bn(branch_1, 96, 3, 3)

    branch_2 = conv2d_bn(input, 64, 1, 1)
    branch_2 = conv2d_bn(branch_2, 96, 3, 3)
    branch_2 = conv2d_bn(branch_2, 96, 3, 3)

    branch_3 = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(input)
    branch_3 = conv2d_bn(branch_3, 96, 1, 1)

    x = concatenate([branch_0, branch_1, branch_2, branch_3], axis=channel_axis)
    return x 
開發者ID:xwzy,項目名稱:Triplet-deep-hash-pytorch,代碼行數:22,代碼來源:inception_v4.py

示例10: block_inception_b

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def block_inception_b(input):
    if K.image_data_format() == 'channels_first':
        channel_axis = 1
    else:
        channel_axis = -1

    branch_0 = conv2d_bn(input, 384, 1, 1)

    branch_1 = conv2d_bn(input, 192, 1, 1)
    branch_1 = conv2d_bn(branch_1, 224, 1, 7)
    branch_1 = conv2d_bn(branch_1, 256, 7, 1)

    branch_2 = conv2d_bn(input, 192, 1, 1)
    branch_2 = conv2d_bn(branch_2, 192, 7, 1)
    branch_2 = conv2d_bn(branch_2, 224, 1, 7)
    branch_2 = conv2d_bn(branch_2, 224, 7, 1)
    branch_2 = conv2d_bn(branch_2, 256, 1, 7)

    branch_3 = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(input)
    branch_3 = conv2d_bn(branch_3, 128, 1, 1)

    x = concatenate([branch_0, branch_1, branch_2, branch_3], axis=channel_axis)
    return x 
開發者ID:xwzy,項目名稱:Triplet-deep-hash-pytorch,代碼行數:25,代碼來源:inception_v4.py

示例11: block_inception_c

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def block_inception_c(input):
    if K.image_data_format() == 'channels_first':
        channel_axis = 1
    else:
        channel_axis = -1

    branch_0 = conv2d_bn(input, 256, 1, 1)

    branch_1 = conv2d_bn(input, 384, 1, 1)
    branch_10 = conv2d_bn(branch_1, 256, 1, 3)
    branch_11 = conv2d_bn(branch_1, 256, 3, 1)
    branch_1 = concatenate([branch_10, branch_11], axis=channel_axis)

    branch_2 = conv2d_bn(input, 384, 1, 1)
    branch_2 = conv2d_bn(branch_2, 448, 3, 1)
    branch_2 = conv2d_bn(branch_2, 512, 1, 3)
    branch_20 = conv2d_bn(branch_2, 256, 1, 3)
    branch_21 = conv2d_bn(branch_2, 256, 3, 1)
    branch_2 = concatenate([branch_20, branch_21], axis=channel_axis)

    branch_3 = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(input)
    branch_3 = conv2d_bn(branch_3, 256, 1, 1)

    x = concatenate([branch_0, branch_1, branch_2, branch_3], axis=channel_axis)
    return x 
開發者ID:xwzy,項目名稱:Triplet-deep-hash-pytorch,代碼行數:27,代碼來源:inception_v4.py

示例12: build_model

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def build_model(self):
    

        img_input = Input(shape=(img_channels, img_rows, img_cols))

        # one conv at the beginning (spatial size: 32x32)
        x = ZeroPadding2D((1, 1))(img_input)
        x = Convolution2D(16, nb_row=3, nb_col=3)(x)

        # Stage 1 (spatial size: 32x32)
        x = bottleneck(x, n, 16, 16 * k, dropout=0.3, subsample=(1, 1))
        # Stage 2 (spatial size: 16x16)
        x = bottleneck(x, n, 16 * k, 32 * k, dropout=0.3, subsample=(2, 2))
        # Stage 3 (spatial size: 8x8)
        x = bottleneck(x, n, 32 * k, 64 * k, dropout=0.3, subsample=(2, 2))

        x = BatchNormalization(mode=0, axis=1)(x)
        x = Activation('relu')(x)
        x = AveragePooling2D((8, 8), strides=(1, 1))(x)
        x = Flatten()(x)
        preds = Dense(nb_classes, activation='softmax')(x)

        self.model = Model(input=img_input, output=preds)
        
        self.keras_get_params() 
開發者ID:uoguelph-mlrg,項目名稱:Theano-MPI,代碼行數:27,代碼來源:wresnet.py

示例13: residual_drop

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def residual_drop(x, input_shape, output_shape, strides=(1, 1)):
    global add_tables

    nb_filter = output_shape[0]
    conv = Convolution2D(nb_filter, 3, 3, subsample=strides,
                         border_mode="same", W_regularizer=l2(weight_decay))(x)
    conv = BatchNormalization(axis=1)(conv)
    conv = Activation("relu")(conv)
    conv = Convolution2D(nb_filter, 3, 3,
                         border_mode="same", W_regularizer=l2(weight_decay))(conv)
    conv = BatchNormalization(axis=1)(conv)

    if strides[0] >= 2:
        x = AveragePooling2D(strides)(x)

    if (output_shape[0] - input_shape[0]) > 0:
        pad_shape = (1,
                     output_shape[0] - input_shape[0],
                     output_shape[1],
                     output_shape[2])
        padding = K.zeros(pad_shape)
        padding = K.repeat_elements(padding, K.shape(x)[0], axis=0)
        x = Lambda(lambda y: K.concatenate([y, padding], axis=1),
                   output_shape=output_shape)(x)

    _death_rate = K.variable(death_rate)
    scale = K.ones_like(conv) - _death_rate
    conv = Lambda(lambda c: K.in_test_phase(scale * c, c),
                  output_shape=output_shape)(conv)

    out = merge([conv, x], mode="sum")
    out = Activation("relu")(out)

    gate = K.variable(1, dtype="uint8")
    add_tables += [{"death_rate": _death_rate, "gate": gate}]
    return Lambda(lambda tensors: K.switch(gate, tensors[0], tensors[1]),
                  output_shape=output_shape)([out, x]) 
開發者ID:dblN,項目名稱:stochastic_depth_keras,代碼行數:39,代碼來源:train.py

示例14: block_inception_c

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def block_inception_c(input):
    if K.image_dim_ordering() == "th":
        channel_axis = 1
    else:
        channel_axis = -1

    branch_0 = conv2d_bn(input, 256, 1, 1)

    branch_1 = conv2d_bn(input, 384, 1, 1)
    branch_10 = conv2d_bn(branch_1, 256, 1, 3)
    branch_11 = conv2d_bn(branch_1, 256, 3, 1)
    branch_1 = merge([branch_10, branch_11], mode='concat', concat_axis=channel_axis)


    branch_2 = conv2d_bn(input, 384, 1, 1)
    branch_2 = conv2d_bn(branch_2, 448, 3, 1)
    branch_2 = conv2d_bn(branch_2, 512, 1, 3)
    branch_20 = conv2d_bn(branch_2, 256, 1, 3)
    branch_21 = conv2d_bn(branch_2, 256, 3, 1)
    branch_2 = merge([branch_20, branch_21], mode='concat', concat_axis=channel_axis)

    branch_3 = AveragePooling2D((3, 3), strides=(1, 1), border_mode='same')(input)
    branch_3 = conv2d_bn(branch_3, 256, 1, 1)

    x = merge([branch_0, branch_1, branch_2, branch_3], mode='concat', concat_axis=channel_axis)
    return x 
開發者ID:filonenkoa,項目名稱:cnn_evaluation_smoke,代碼行數:28,代碼來源:inception_v4.py

示例15: build

# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def build(width, height, depth, classes):
    input_shape = (width, height, depth)
    channel_dim = -1

    if K.image_data_format() == "channels_first":
      input_shape = (depth, width, height)
      channel_dim = 1

    inputs = Input(shape=input_shape)
    x = MiniGoogleNet.conv_module(inputs, 96, 3, 3, (1, 1), channel_dim=channel_dim)
    x = MiniGoogleNet.inception_module(x, 32, 32, channel_dim=channel_dim)
    x = MiniGoogleNet.inception_module(x, 32, 48, channel_dim=channel_dim)
    x = MiniGoogleNet.downsample_module(x, 80, channel_dim=channel_dim)

    x = MiniGoogleNet.inception_module(x, 112, 48, channel_dim=channel_dim)
    x = MiniGoogleNet.inception_module(x, 96, 64, channel_dim=channel_dim)
    x = MiniGoogleNet.inception_module(x, 80, 80, channel_dim=channel_dim)
    x = MiniGoogleNet.inception_module(x, 48, 96, channel_dim=channel_dim)
    x = MiniGoogleNet.downsample_module(x, 96, channel_dim=channel_dim)

    x = MiniGoogleNet.inception_module(x, 176, 160, channel_dim=channel_dim)
    x = MiniGoogleNet.inception_module(x, 176, 160, channel_dim=channel_dim)
    x = AveragePooling2D((7, 7))(x)
    x = Dropout(0.5)(x)

    # softmax classifier
    x = Flatten()(x)
    x = Dense(classes)(x)
    x = Activation("softmax")(x)

    model = Model(inputs, x, name="googlenet")

    return model 
開發者ID:mogoweb,項目名稱:aiexamples,代碼行數:35,代碼來源:minigooglenet.py


注:本文中的keras.layers.convolutional.AveragePooling2D方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。