本文整理匯總了Python中keras.layers.convolutional.AveragePooling2D方法的典型用法代碼示例。如果您正苦於以下問題:Python convolutional.AveragePooling2D方法的具體用法?Python convolutional.AveragePooling2D怎麽用?Python convolutional.AveragePooling2D使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類keras.layers.convolutional
的用法示例。
在下文中一共展示了convolutional.AveragePooling2D方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: block_inception_a
# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def block_inception_a(input):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
branch_0 = conv2d_bn(input, 96, 1, 1)
branch_1 = conv2d_bn(input, 64, 1, 1)
branch_1 = conv2d_bn(branch_1, 96, 3, 3)
branch_2 = conv2d_bn(input, 64, 1, 1)
branch_2 = conv2d_bn(branch_2, 96, 3, 3)
branch_2 = conv2d_bn(branch_2, 96, 3, 3)
branch_3 = AveragePooling2D((3,3), strides=(1,1), border_mode='same')(input)
branch_3 = conv2d_bn(branch_3, 96, 1, 1)
x = merge([branch_0, branch_1, branch_2, branch_3], mode='concat', concat_axis=channel_axis)
return x
示例2: block_inception_b
# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def block_inception_b(input):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
branch_0 = conv2d_bn(input, 384, 1, 1)
branch_1 = conv2d_bn(input, 192, 1, 1)
branch_1 = conv2d_bn(branch_1, 224, 1, 7)
branch_1 = conv2d_bn(branch_1, 256, 7, 1)
branch_2 = conv2d_bn(input, 192, 1, 1)
branch_2 = conv2d_bn(branch_2, 192, 7, 1)
branch_2 = conv2d_bn(branch_2, 224, 1, 7)
branch_2 = conv2d_bn(branch_2, 224, 7, 1)
branch_2 = conv2d_bn(branch_2, 256, 1, 7)
branch_3 = AveragePooling2D((3,3), strides=(1,1), border_mode='same')(input)
branch_3 = conv2d_bn(branch_3, 128, 1, 1)
x = merge([branch_0, branch_1, branch_2, branch_3], mode='concat', concat_axis=channel_axis)
return x
示例3: block_inception_a
# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def block_inception_a(input):
if K.image_data_format() == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
branch_0 = conv2d_bn(input, 96, 1, 1)
branch_1 = conv2d_bn(input, 64, 1, 1)
branch_1 = conv2d_bn(branch_1, 96, 3, 3)
branch_2 = conv2d_bn(input, 64, 1, 1)
branch_2 = conv2d_bn(branch_2, 96, 3, 3)
branch_2 = conv2d_bn(branch_2, 96, 3, 3)
branch_3 = AveragePooling2D((3,3), strides=(1,1), padding='same')(input)
branch_3 = conv2d_bn(branch_3, 96, 1, 1)
x = concatenate([branch_0, branch_1, branch_2, branch_3], axis=channel_axis)
return x
示例4: block_inception_b
# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def block_inception_b(input):
if K.image_data_format() == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
branch_0 = conv2d_bn(input, 384, 1, 1)
branch_1 = conv2d_bn(input, 192, 1, 1)
branch_1 = conv2d_bn(branch_1, 224, 1, 7)
branch_1 = conv2d_bn(branch_1, 256, 7, 1)
branch_2 = conv2d_bn(input, 192, 1, 1)
branch_2 = conv2d_bn(branch_2, 192, 7, 1)
branch_2 = conv2d_bn(branch_2, 224, 1, 7)
branch_2 = conv2d_bn(branch_2, 224, 7, 1)
branch_2 = conv2d_bn(branch_2, 256, 1, 7)
branch_3 = AveragePooling2D((3,3), strides=(1,1), padding='same')(input)
branch_3 = conv2d_bn(branch_3, 128, 1, 1)
x = concatenate([branch_0, branch_1, branch_2, branch_3], axis=channel_axis)
return x
示例5: test_averagepooling_2d
# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def test_averagepooling_2d():
layer_test(convolutional.AveragePooling2D,
kwargs={'strides': (2, 2),
'padding': 'same',
'pool_size': (2, 2)},
input_shape=(3, 5, 6, 4))
layer_test(convolutional.AveragePooling2D,
kwargs={'strides': (2, 2),
'padding': 'valid',
'pool_size': (3, 3)},
input_shape=(3, 5, 6, 4))
layer_test(convolutional.AveragePooling2D,
kwargs={'strides': (1, 1),
'padding': 'valid',
'pool_size': (2, 2),
'data_format': 'channels_first'},
input_shape=(3, 4, 5, 6))
示例6: inception_A
# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def inception_A(input):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
a1 = conv_block(input, 96, 1, 1)
a2 = conv_block(input, 64, 1, 1)
a2 = conv_block(a2, 96, 3, 3)
a3 = conv_block(input, 64, 1, 1)
a3 = conv_block(a3, 96, 3, 3)
a3 = conv_block(a3, 96, 3, 3)
a4 = AveragePooling2D((3, 3), strides=(1, 1), border_mode='same')(input)
a4 = conv_block(a4, 96, 1, 1)
m = merge([a1, a2, a3, a4], mode='concat', concat_axis=channel_axis)
return m
示例7: inception_B
# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def inception_B(input):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
b1 = conv_block(input, 384, 1, 1)
b2 = conv_block(input, 192, 1, 1)
b2 = conv_block(b2, 224, 1, 7)
b2 = conv_block(b2, 256, 7, 1)
b3 = conv_block(input, 192, 1, 1)
b3 = conv_block(b3, 192, 7, 1)
b3 = conv_block(b3, 224, 1, 7)
b3 = conv_block(b3, 224, 7, 1)
b3 = conv_block(b3, 256, 1, 7)
b4 = AveragePooling2D((3, 3), strides=(1, 1), border_mode='same')(input)
b4 = conv_block(b4, 128, 1, 1)
m = merge([b1, b2, b3, b4], mode='concat', concat_axis=channel_axis)
return m
示例8: inception_C
# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def inception_C(input):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
c1 = conv_block(input, 256, 1, 1)
c2 = conv_block(input, 384, 1, 1)
c2_1 = conv_block(c2, 256, 1, 3)
c2_2 = conv_block(c2, 256, 3, 1)
c2 = merge([c2_1, c2_2], mode='concat', concat_axis=channel_axis)
c3 = conv_block(input, 384, 1, 1)
c3 = conv_block(c3, 448, 3, 1)
c3 = conv_block(c3, 512, 1, 3)
c3_1 = conv_block(c3, 256, 1, 3)
c3_2 = conv_block(c3, 256, 3, 1)
c3 = merge([c3_1, c3_2], mode='concat', concat_axis=channel_axis)
c4 = AveragePooling2D((3, 3), strides=(1, 1), border_mode='same')(input)
c4 = conv_block(c4, 256, 1, 1)
m = merge([c1, c2, c3, c4], mode='concat', concat_axis=channel_axis)
return m
示例9: block_inception_a
# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def block_inception_a(input):
if K.image_data_format() == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
branch_0 = conv2d_bn(input, 96, 1, 1)
branch_1 = conv2d_bn(input, 64, 1, 1)
branch_1 = conv2d_bn(branch_1, 96, 3, 3)
branch_2 = conv2d_bn(input, 64, 1, 1)
branch_2 = conv2d_bn(branch_2, 96, 3, 3)
branch_2 = conv2d_bn(branch_2, 96, 3, 3)
branch_3 = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(input)
branch_3 = conv2d_bn(branch_3, 96, 1, 1)
x = concatenate([branch_0, branch_1, branch_2, branch_3], axis=channel_axis)
return x
示例10: block_inception_b
# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def block_inception_b(input):
if K.image_data_format() == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
branch_0 = conv2d_bn(input, 384, 1, 1)
branch_1 = conv2d_bn(input, 192, 1, 1)
branch_1 = conv2d_bn(branch_1, 224, 1, 7)
branch_1 = conv2d_bn(branch_1, 256, 7, 1)
branch_2 = conv2d_bn(input, 192, 1, 1)
branch_2 = conv2d_bn(branch_2, 192, 7, 1)
branch_2 = conv2d_bn(branch_2, 224, 1, 7)
branch_2 = conv2d_bn(branch_2, 224, 7, 1)
branch_2 = conv2d_bn(branch_2, 256, 1, 7)
branch_3 = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(input)
branch_3 = conv2d_bn(branch_3, 128, 1, 1)
x = concatenate([branch_0, branch_1, branch_2, branch_3], axis=channel_axis)
return x
示例11: block_inception_c
# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def block_inception_c(input):
if K.image_data_format() == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
branch_0 = conv2d_bn(input, 256, 1, 1)
branch_1 = conv2d_bn(input, 384, 1, 1)
branch_10 = conv2d_bn(branch_1, 256, 1, 3)
branch_11 = conv2d_bn(branch_1, 256, 3, 1)
branch_1 = concatenate([branch_10, branch_11], axis=channel_axis)
branch_2 = conv2d_bn(input, 384, 1, 1)
branch_2 = conv2d_bn(branch_2, 448, 3, 1)
branch_2 = conv2d_bn(branch_2, 512, 1, 3)
branch_20 = conv2d_bn(branch_2, 256, 1, 3)
branch_21 = conv2d_bn(branch_2, 256, 3, 1)
branch_2 = concatenate([branch_20, branch_21], axis=channel_axis)
branch_3 = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(input)
branch_3 = conv2d_bn(branch_3, 256, 1, 1)
x = concatenate([branch_0, branch_1, branch_2, branch_3], axis=channel_axis)
return x
示例12: build_model
# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def build_model(self):
img_input = Input(shape=(img_channels, img_rows, img_cols))
# one conv at the beginning (spatial size: 32x32)
x = ZeroPadding2D((1, 1))(img_input)
x = Convolution2D(16, nb_row=3, nb_col=3)(x)
# Stage 1 (spatial size: 32x32)
x = bottleneck(x, n, 16, 16 * k, dropout=0.3, subsample=(1, 1))
# Stage 2 (spatial size: 16x16)
x = bottleneck(x, n, 16 * k, 32 * k, dropout=0.3, subsample=(2, 2))
# Stage 3 (spatial size: 8x8)
x = bottleneck(x, n, 32 * k, 64 * k, dropout=0.3, subsample=(2, 2))
x = BatchNormalization(mode=0, axis=1)(x)
x = Activation('relu')(x)
x = AveragePooling2D((8, 8), strides=(1, 1))(x)
x = Flatten()(x)
preds = Dense(nb_classes, activation='softmax')(x)
self.model = Model(input=img_input, output=preds)
self.keras_get_params()
示例13: residual_drop
# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def residual_drop(x, input_shape, output_shape, strides=(1, 1)):
global add_tables
nb_filter = output_shape[0]
conv = Convolution2D(nb_filter, 3, 3, subsample=strides,
border_mode="same", W_regularizer=l2(weight_decay))(x)
conv = BatchNormalization(axis=1)(conv)
conv = Activation("relu")(conv)
conv = Convolution2D(nb_filter, 3, 3,
border_mode="same", W_regularizer=l2(weight_decay))(conv)
conv = BatchNormalization(axis=1)(conv)
if strides[0] >= 2:
x = AveragePooling2D(strides)(x)
if (output_shape[0] - input_shape[0]) > 0:
pad_shape = (1,
output_shape[0] - input_shape[0],
output_shape[1],
output_shape[2])
padding = K.zeros(pad_shape)
padding = K.repeat_elements(padding, K.shape(x)[0], axis=0)
x = Lambda(lambda y: K.concatenate([y, padding], axis=1),
output_shape=output_shape)(x)
_death_rate = K.variable(death_rate)
scale = K.ones_like(conv) - _death_rate
conv = Lambda(lambda c: K.in_test_phase(scale * c, c),
output_shape=output_shape)(conv)
out = merge([conv, x], mode="sum")
out = Activation("relu")(out)
gate = K.variable(1, dtype="uint8")
add_tables += [{"death_rate": _death_rate, "gate": gate}]
return Lambda(lambda tensors: K.switch(gate, tensors[0], tensors[1]),
output_shape=output_shape)([out, x])
示例14: block_inception_c
# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def block_inception_c(input):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
branch_0 = conv2d_bn(input, 256, 1, 1)
branch_1 = conv2d_bn(input, 384, 1, 1)
branch_10 = conv2d_bn(branch_1, 256, 1, 3)
branch_11 = conv2d_bn(branch_1, 256, 3, 1)
branch_1 = merge([branch_10, branch_11], mode='concat', concat_axis=channel_axis)
branch_2 = conv2d_bn(input, 384, 1, 1)
branch_2 = conv2d_bn(branch_2, 448, 3, 1)
branch_2 = conv2d_bn(branch_2, 512, 1, 3)
branch_20 = conv2d_bn(branch_2, 256, 1, 3)
branch_21 = conv2d_bn(branch_2, 256, 3, 1)
branch_2 = merge([branch_20, branch_21], mode='concat', concat_axis=channel_axis)
branch_3 = AveragePooling2D((3, 3), strides=(1, 1), border_mode='same')(input)
branch_3 = conv2d_bn(branch_3, 256, 1, 1)
x = merge([branch_0, branch_1, branch_2, branch_3], mode='concat', concat_axis=channel_axis)
return x
示例15: build
# 需要導入模塊: from keras.layers import convolutional [as 別名]
# 或者: from keras.layers.convolutional import AveragePooling2D [as 別名]
def build(width, height, depth, classes):
input_shape = (width, height, depth)
channel_dim = -1
if K.image_data_format() == "channels_first":
input_shape = (depth, width, height)
channel_dim = 1
inputs = Input(shape=input_shape)
x = MiniGoogleNet.conv_module(inputs, 96, 3, 3, (1, 1), channel_dim=channel_dim)
x = MiniGoogleNet.inception_module(x, 32, 32, channel_dim=channel_dim)
x = MiniGoogleNet.inception_module(x, 32, 48, channel_dim=channel_dim)
x = MiniGoogleNet.downsample_module(x, 80, channel_dim=channel_dim)
x = MiniGoogleNet.inception_module(x, 112, 48, channel_dim=channel_dim)
x = MiniGoogleNet.inception_module(x, 96, 64, channel_dim=channel_dim)
x = MiniGoogleNet.inception_module(x, 80, 80, channel_dim=channel_dim)
x = MiniGoogleNet.inception_module(x, 48, 96, channel_dim=channel_dim)
x = MiniGoogleNet.downsample_module(x, 96, channel_dim=channel_dim)
x = MiniGoogleNet.inception_module(x, 176, 160, channel_dim=channel_dim)
x = MiniGoogleNet.inception_module(x, 176, 160, channel_dim=channel_dim)
x = AveragePooling2D((7, 7))(x)
x = Dropout(0.5)(x)
# softmax classifier
x = Flatten()(x)
x = Dense(classes)(x)
x = Activation("softmax")(x)
model = Model(inputs, x, name="googlenet")
return model